
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1994

Petri net approaches for modeling, controlling, and
validating flexible manufacturing systems
Bong Wan Choi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons, and the Systems Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Choi, Bong Wan, "Petri net approaches for modeling, controlling, and validating flexible manufacturing systems " (1994). Retrospective
Theses and Dissertations. 10687.
https://lib.dr.iastate.edu/rtd/10687

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10687?utm_source=lib.dr.iastate.edu%2Frtd%2F10687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

U-M-I
MlCROFa.MED 1994

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 9503640

Petri net approaches for modeling, controlling, and validating
flexible manufacturing systems

Choi, Bong Wan, Ph.D.

Iowa State University, 1994

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

Petri net approaches for modeling, controlling, and validating

flexible manufacturing systems

by

Bong Wan Choi

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department; Industrial and Manufacturing Systems Engineering
Major; Industrial Engineering

Approved;

Charge of Maj

For the Major Department

' e Graduate College

Iowa State University
Ames, Iowa

1994

Copyright © Bong Wan Choi, 1994. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS vii

GENERAL INTRODUCTION 1

Background 1

Motivations and Objectives 2

Organization of the Dissertation 3

PAPER I. PETRI NETS: A STATE-OF-THE ART REVIEW 5

ABSTRACT 6

INTRODUCTION 7

History 7

Objective 7

Advantages and Disadvantages of Petri Nets 8

PETRI NETS 12

Ordinary Petri Nets 12

Timed Petri Nets 16

Colored Petri Net 20

Stochastic Petri Nets 23

Control Petri Nets 25

www.manaraa.com

iii

Neural Petri Nets 30

ANALYSIS OF PETRI NETS 32

Invariants 32

Reachability Tree 33

APPLICATIONS OF PETRI NETS 35

Petri Net Models for Production Systems 35

Petri Net Based Controllers 36

Performance Analysis 38

REDUCTION OF PETRI NETS 40

BIBLIOGRAPHY 41

PAPER II. PETRI NET EXTENSIONS FOR MODELING AND

VALIDATING MANUFACTURING SYSTEMS 48

ABSTRACT 49

INTRODUCTION 50

MODELING METHODOLOGY 52

Ordinary Petri Nets 52

Processing Time 52

Resources 54

Products Structure 56

Storage 58

MODELING A MANUFACTURING SYSTEM 59

Product Structure and Resources 59

Modeling 60

www.manaraa.com

iv

VALIDATION OF PETRI NET MODEL 63

Invariant Method - 63

Reachability Tree Method 65

PERFORMANCE ANALYSIS 67

Maximum Production Rate of the System 67

The Production Schedule 67

Numerical Results 68

CONCLUSION 74

BIBLIOGRAPHY 75

PAPER III. A PETRI NET APPROACH TO MODELING, ANA­

LYZING, AND EVALUATING AN AUTOMATED PAL­

LETIZED CONVEYOR SYSTEM 89

ABSTRACT 90

INTRODUCTION 91

AN AUTOMATED PALLETIZED CONVEYOR SYSTEM 94

MODELING METHODOLOGY 97

Ordinary Petri nets 97

Process Time 99

Resources 102

Products Structure 104

Storage 107

MODELING THE APCS 109

A Proposed Petri Net Model 109

www.manaraa.com

V

Analyzing the Proposed Petri Net Model 113

PERFORMANCE ANALYSIS 117

Maximum Production Rate of the System 117

The Process Schedule 118

Numerical Results 119

CONCLUSION 124

BIBLIOGRAPHY 125

PAPER IV. AN ENHANCED METHOD FOR MANAGING PROB­

LEMS IN A FLEXIBLE MANUFACTURING MACHINE 127

ABSTRACT 128

INTRODUCTION 129

PROBLEM STATEMENTS AND MODELING 133

THE TOOL-CHANGING PROBLEM 137

Job Sequencing 138

General Procedure 143

PETRI NET REPRESENTATION 146

Petri Nets 146

Idustrial Application 153

CONCLUSION 160

BIBLIOGRAPHY 161

GENERAL SUMMARY AND FUTURE STUDY 163

APPENDIX A: MODIFIED PETRI NET MODEL WRITTEN IN C 165

www.manaraa.com

vi

APPENDIX B: PROGRAMMABLE LOGIC CONTROLLER(PLC)

AND RELAY LADDER LOGIC FOR THE APCS

www.manaraa.com

vii

ACKNOWLEDGMENTS

I would like to express thank to my God first.

There are a number of people who provided assistance and support my doctoral

studies. Without their help, the successful execution of my study would have been

most difficult.

Dr. Way Kuo deserves the first acknowledgment. I am especially grateful to Dr.

Kuo for his understanding, eagerness, patience and encouragement throughout my

doctoral studies.

I also express my appreciation to Dr. Doug Gemmill, Dr. Young W. Park,

Dr. Richard Linn, Dr. Doug Jacobson and Dr. Irvin Hentzel for helpful advice and

serving as research committee.

I also thank the Korean Navy for supporting me during my doctoral studies.

Finally, I would like to say, the honor of this dissertation should go to my wife

shin-ju, Lee and my daughter Ji-hyun (Karan) and Rebecca because of their assis­

tances and sacrifices.

www.manaraa.com

1

GENERAL INTRODUCTION

Background

The doctoral dissertation of Carl Adam Petri in 1962 introduced a initial the­

oretic concepts of Petri nets and discussed the basis for a theory of communication

between synchronous components of a computer system. Petri Wcis particularly con­

cerned with describing the causal relationships between events that can be occured

in a computer system. This work thus began the development of Petri nets into the

large body of research and development existing today. Initially, many researchers

studied Petri nets with respect to theories and applications. The use and study of

the Petri nets have spread, and many research projects and conferences on Petri nets

(e.g., Information System Theory Project at Rome Air Development Center, GrifF-

iss Air Force Base, New York and Project MAC at the Massachusetts Institute of

Technology) have come to our attention.

Further, the research areas of Petri nets have spread and have expanded to depth

in theory and width in application on the beisis of the mathematical as well as the

graphical tool. Recently, many authors who have entered the research of Petri nets

have provided not only suitable platforms in the areas of modeling and design of

concurrent systems, information systems, manufacturing systems, and performance

www.manaraa.com

2

analysis, but also their own experience and understanding of various extended models

and applications. Also an excellent society has been established for sharing new

research results with other researchers who are concerned about the field of Petri

nets. These environments continuously made me to have strong attention, and gave

motivations and backgrounds to study the areas of Petri nets as a Ph.D. dissertation.

Motivations and Objectives

The basis of Petri nets is to model graphically and test analytically the dis­

crete events of concurrent operations within a computer system. Of course, the

fundamental constructs of Petri nets are useful to model and analyze manufacturing

systems. Since 1962, many researchers have studied Petri nets and published reports

and papers in many diverse areas, and their contributions also have been growing

impressively in a versertile scientific and engineering activities. However, many re­

searcher's works have only partial representation Petri net theories and applications

with respect to background, sequential studies, and application areas, and also their

works have been difficult to access easily. Therefore, we present four papers that

describe Petri nets studies in order of studies, in details, and in well-organize with

accomplishments of three objectives: (1) study the fundamental constructs of Petri

nets that can be visualized, analyzed, and validated for a discrete system, production

system, manufacturing system, or as controller in a flexible manufacturing system, (2)

suggest some extensions that help make Petri nets useful for modeling and analyzing

discrete event systems and manufacturing systems models (3) Validation methods are

presented for these models, and results of a performance analysis from a deterministic

and atochastic model are used to reorganize and re-evaluate a manufacturing system

www.manaraa.com

3

in order to increase its flexibility.

Organization of the Dissertation

The four papers included in this dissertation introduce the fundamental ideas

and constructs of Petri net models, extend these models based on the context of

a versatile manufacturing system, and apply extended Petri nets models to several

manufacturing systems such an assembly cell, an Automated Palletized Conveyor

System, and a tooling machine to show increased modeling power and efficient anal­

ysis methods.

In the first paper, the fundamental constructs of the Petri nets (ordinary,

timed, colored, stochastic, control, and neural) are reviewed, and suggested extensions

that help make Petri nets useful for modeling and analyzing discrete event systems

and manufacturing systems models are introduced. We then present some studies that

emphcisize Petri nets theories and applications as extended research fields that provide

suitable platforms in modeling, controlling, validating, and evaluating concurrent

systems, information systems, and a versatile dynamic system and and manufacturing

systems. Finally, we introduce methods for reducing Petri net models.

In the second paper, we introduce the fundamental constructs of Petri net

models. We then extend these models and apply them to manufacturing systems.

Validation methods are presented for these models. In addition, results of a perfor­

mance analysis from a deterministic model are used to reorganize and re-evaluate a

manufacturing system in order to increase its flexibility. In the third paper, we

present an approach to modeling, analyzing and evaluating an Automated Palletized

Conveyor System (APCS) using extended Petri net models. We first examine the

www.manaraa.com

4

APCS and extend the fundamental constructs of Petri net models. We then build a

Petri net model of the given APCS, analyze important qualitative aspects of APCS

behaviors, and finally evaluate performances of the APCS.

A modified deterministic and stochastic algorithm is developed to describe and

evaluate the Petri net model of the given APCS. The input and control mechanisms

of the Petri net model are varied, implemented, and evaluated to produce results that

can be used to redesign the APCS and also can be directly applied to the design and

analysis of the full-scale material handling operation.

In the fourth paper, we have studied the tool changing problem that arises in

flexible manufacturing environments. We introduce and review this problem as an

overall model that can be formulated as a linear and non-linear integer problem. We

then extend this model on the basis of two more constraints: (l)jobs that require

more than C tools, with C representing the magazine capacity of the machine, and

(2)the increased processing time that is required for tuning the tool offset after a

tool in slot #1 is changed. Since this model increases computational complexity, we

propose a heuristic approach for job sequencing. This approach is locally optimized

to minimize the number of tool changes.

Next, we introduce the fundamental constructs of the Petri net models to de­

scribe sequence control specifications for a flexible manufacturing machine. We then

examine a flexible manufacturing cell that has two automated guided vehicles and a

milling machine (DM4400) with an automatic tool changer. Finally, we build a Petri

net model as the interpretation schema and implementation model with respect to

the local optimal job sequence, the tool changing-procedure, and the machining job

of the milling machine.

www.manaraa.com

5

PAPER L

PETRI NETS: A STATE-OF-THE ART REVIEW

www.manaraa.com

6

ABSTRACT

Petri nets have been used successfully to model, control, and analyze discrete

event dynamic systems that are characterized by: concurrency or parallelism; asyn­

chronous processes; distributed, deterministic and/or stochastic, deadlocks, conflicts,

and event driven-processes. Petri nets are also particularly valuable when modeling

and analyzing versatile manufacturing systems because they provide accurate models

and efficient analysis methods based on they (1) capture interactions of concurrent

and sequential events, (2) are logical models derived from the knowledge of how sys­

tems work, (3) give concise models for conflicts and buffer sizes, and (4) can be used

to implement real-time analysis.

In this paper, the fundamental constructs of the Petri nets (ordinary, timed, col­

ored, stochastic, control, and neural) are reviewed as they developed, and suggested

extensions that help make Petri nets useful for modeling and analyzing discrete event

systems and manufacturing systems are introduced. We then present some studies

that emphasize Petri nets theories and applications as extended research fields that

provide suitable platforms in modeling, controlling, validating, and evaluating concur­

rent systems, information systems, and manufacturing systems. Finally, we introduce

methods for reducing Petri net models.

www.manaraa.com

7

INTRODUCTION

History

The doctoral dissertation of Carl Adam Petri in 1962 [1] discussed the basis for

a theory of communication between synchronous components of a computer system.

Petri Wcis particularly concerned with describing the causal relationships between

events [2]. This work thus began the development of Petri nets into the large body

of research and development existing today. Initially, many researchers studied Petri

nets with respect to theories and applications. The use and study of the Petri nets

have spread, and many research projects and conferences on Petri nets (e.g., Project

MAC at the Massachusetts Institute of Technology) have come to our attention [2].

Further, the research areas of Petri nets have spread and have expanded to depth

in theory and width in application on the basis of the mathematical as well as the

graphical tool. Recently, many authors who have entered the research of Petri nets

have provided not only suitable platforms in the areas of modeling and design of

concurrent systems, information systems, manufacturing systems, and performance

analysis, but also their own experience and understanding of various extended models

and applications. Also an excellent society has been established for sharing new

research results with other researchers who are concerned about the field of Petri

nets.

Objective

The basis of Petri nets is to model graphically and test analytically the discrete

events of concurrent operations within a system. Of course, the fundamental con­

www.manaraa.com

8

structs of Petri nets are useful to model and analyze manufacturing systems. The

objectives of this paper are (1) to study the fundamental constructs of Petri nets that

can be visualized, analyzed, and validated for a discrete system, production system,

manufacturing system, or as controller in a flexible manufacturing system, and (2) to

introduce a state-of-the-art review of Petri nets and their applications in depth and

width of their useful fields of Petri nets.

Advantages and Disadvantages of Petri Nets

Kamath and Viswanadham [3] have introduced several positive aspects of Petri

nets for general dynamic systems;

• they describe the modeled system graphically and hence enable an easy visual­

ization of complex systems,

• Petri nets can model a system hierarchically (systems can be represented in a

top-down fashion at various levels of abstraction and detail),

• a well-developed Petri net analysis techniques provide a systematic and com­

plete qualitative analysis of the system

• the existence of well-formulated schemes for Petri net synthesis facilitates sys­

tem design and synthesis, and timed Petri nets can evaluate system perfor­

mance.

Peterson [2] wrote further advantages of Petri nets cis a model of parallel computation.

In large part, Petri nets are receiving increased attention because of their simplicity

coupled with a careful balance of modeling power and decision power. The modeling

www.manaraa.com

9

power of Petri nets is quite good, as witnessed by the wide variety of systems that

can be modeled by Petri nets. The decision power is also good, since the reachability

problem is decidable, and most problems can be converted into reachability problems.

Agerwala [4] further states that Petri nets include the ability to model at every level

of the system, something which most other design languages cannot do.

More recently, Al-Jaar and Desrochers [5,6] introduced the concept that Petri

nets are useful for the modeling , performance evaluation, and control of manufac­

turing systems with the following characteristics:

• Concurrency or parallelism

In a manufacturing system, many operations that are enabled and do not in­

teract take place at the same time.

• Asynchronous and synchronous

Machines need variable amounts of time to complete their operations, and this

variability must maintain the partial ordering of the occurrence of operations.

• Deadlock

A state can be reached where none of the processes can continue. This situation

can occur when two jobs share two resources. More specifically, when one job

takes the first resource and the other job takes the second resource, then both

jobs cannot go further because two resources are occupied. The order in which

two resources are used and released for two jobs needs to be arranged.

www.manaraa.com

10

• Conflict

This may occur when two or more jobs require a common resource at the same

time. For example, two workstations might share a common transport system

or might simultaneously want access to the same database.

• Event driven

The manufacturing system can be viewed as a sequence of discrete events.

Since operations occur concurrently, the order of occurrence of events is not

necessarily unique; it is one of many allowed by the system structure.

• Real-time control

Petri net models can also be used to implement real-time control systems for

an automated manufacturing system. They can sequence and coordinate the

subsystems like a programmable logic controller does.

• Mathematical foundation

Petri net models have a well-developed mathematical foundation that allows a

qualitative and quantitative analysis of the system.

In addition, the Petri nets offer convenient ways of expressing system behavior

that are both asynchronous and distributed, compared with other common graph

models of dynamic behavior (such as the state transition diagram of a finite-state

machine, or the PERT/CPM network). Petri nets also provide a solid platform for

the precedence constraints among operations and relaxed couplings associated with

shared resources, as well as the repetition or sequences of certain operations. Finally,

www.manaraa.com

11

the Petri nets can be analyzed in a formal way to obtain information about the

dynamic behavior of the modeled system [7-9].

In addition to advantages of Petri nets, Peterson [2] summarized some of the

disadvantages as follows:

• The concurrency of operations has become more and more common. This has

generally improved utilization and throughput, but consequently increases the

complexity.

• Subclasses of Petri nets increase the decision power, but at a cost of being unable

to model a large number of systems. Extended Petri net models increase the

modeling power, but in all known cases at the expense of decision power, since

most analysis questions become undecidable.

• Petri net models have limitations in their inability to test for exactly a specific

marking in an unbounded place and to take action on the outcome of the test.

www.manaraa.com

12

PETRI NETS

Ordinary Petri Nets

• Structure of a Petri net

A Petri net (PN) is a four-tuple, PN = (P,T,I,0), where P = { p|, P2, ...,

pn, } is & set of places, T = { <2i • • - i^ni } is a set of transitions, I is an

input function, and 0 is an output function. The set of places and the set of

transitions are disjointed as, PnT = 0, IC {P*T }, and 0 C { T * P } are

sets of directed arcs.

A place Pi is an input place of a transition t j if p^ G Pi output place

if PI £ 0{ t j) . The structure of a Petri net is defined by its places, transitions,

input function, and output function, as shown in Figure 1.

• Petri net graph

More theoretical work on Petri nets is based on the formal definition of Petri

net structures. However, a graphical representation of a Petri net structure is

much more useful for illustrating the concepts of the Petri net.

A Petri net graph uses circles to represent places (states) and bars to represent

transitions (events). Input-output relationships are represented by directed arcs

between places and transitions. An arc directed from a place pj to a transition

tj defines the place to be an input of the transition. Multiple inputs to a

transition are indicated by multiple arcs from the input places to the transition.

An output place is indicated by an arc from the transition to the place. Again,

multiple outputs are represented by multiple arcs. A Petri net is a multigraph,

www.manaraa.com

13

since it allows multiple arcs from one node of the graph to another. In addition,

since the arcs are directed, the Petri net is a directed multigraph. Since the

nodes of the graph can be partitioned into two sets (places and transitions),

such that each arc is directed from an element of one set (place or transition)

to an element of the other set (transition or place), the Petri net is a bipartite

directed multigraph [2]. We refer to it simply as a Petri net graph.

• Marked Petri net (= M)

A Petri net M containing a marking /i is a marked Petri net, M = (P,T,I,0,/x).

Marking /z of a Petri net PN is a function from the set P to a set of non-negative

integers N, /z: P ^ N, where fi sets tokens to every place, /ij = /i(p^ 6 N

indicates the number of tokens in place Pj). We denote a marked Petri net (=

M) by (PN, /i). We generally associate an initial marking /iq with a given M.

Tokens reside at a place when it is active. Tokens flow through the net depend­

ing on the present marking of the net. The marking of a Petri net is contained

in a vector of dimension n, where n is the number of places and each value

of the vector corresponds to the number of tokens in the corresponding place.

Figure 1(a) shows an example of marking for PN where dots represent tokens.

For the example of Figure 1(a), /zq = (1,1,0) and /xj = (0,0,1).

• Dynamic behavior

When there is a token in each of the input places of a transition, that transi­

tion is enabled to fire. If the weights on each of the arcs between places and

transitions are equal to one, then the transition fires by removing a token from

each of its input places and by placing a token in each of its output places.

www.manaraa.com

14

• J ROBOT IS IDLE

0 — O
ROBOT IS BUSY

CONVEYOR IS AVAILABLE

(a) Petri net example

ROBOT IS IDLE

PROCESS TIME A

CONVEYOR IS AVAILABLE TRANSITION tl

(b) Timed Petri net example

Figure 1: Ordinary and Marked Petri net example

State (= S) of the Petri net

Marking /i = (/ij, • • •> /'n) is also called the state of a Petri net. Let

state S be

where

S=(si, S2, sji)

S i =
1, if Mi =/^(Pi) > 0,

0 , i f (i i= t i {p i) = 0

The state S shows whether a place has tokens or not.

www.manaraa.com

15

— Incident matrix and firing rules

Let INS be the (m,n) —» { 0,1,..., i } function that defines the multiplicity

of an input place of the transition. Also let OUTS be the (m,n) —> { 0,1,

..o } function that defines the multiplicity of an output place of the

transition. If the M has no self-loops, then the m x n incident matrix

D defined by D = OUTS - INS characterizes the relationship between

places and transitions. Therefore, the functions of INS and OUTS of Petri

net M are represented by two matrices D~ and Each matrix has

m rows for each place and n columns for each transition. The incident

ma t r ix D i s de f ined by D = D'^[j , i] (= # (P j , l { t j)) - D~[j , i] (= #

{Pi^O{ij)) [2].

Now a transition t j is enabled in marking /x if

/z > e[j] X D~

where e[j] is the unit m-vector, which is zero everywhere except in the jth

component.

The result of firing transition t j in marking /i, if it is enabled, is

/X - e[i] X + ep] x />+,

= /i + e[j] X { -D~ + D+),

= -t- e[j] X D.

Figure 1(b) also shows a Petri net example for accessing a robot. The tokens,

places, and transitions must be assigned a meaning for proper interpretation of the

model. In a manufacturing system, places usually represent resources (e.g., machine,

www.manaraa.com

16

part, and data). A token in a place indicates that the resource is available; otherwise

it is unavailable. A place can also be used to imply that a particular condition holds.

Transitions are generally used to represent the initiation or termination of an event.

Timed Petri Nets

A strength of the Petri net formalism is that it provides a set of simple constructs

that can model a wide variety of systems. However, a major weakness of ordinary

Petri nets is that they provide no way to represent the passage of time. Indeed,

assumptions are made regarding the amount of time it takes to complete the different

processes. Tokens move in a manufacturing system according to the transition firings,

which have a given processing time.

Ramchandani [10] and Sifakis [11] introduced the notion of a timed Petri net

(TPN). Ramchandani described a timed Petri net as a pair (PN,/;), where PN is a

Petri net and t; is a vector of processing time functions that assigns a positive rational

number to each transition of the net. In a timed Petri net model, each transition

(after being enabled) has a time delay of 7/(ij) before firing. The firing times must be

rational so that one can discretize the processing times in units of time and precisely

describe the state of the process at each instant of time. The rule of operation of

a TPN is similar to an ordinary PN. Once a transition is enabled, the tokens are

removed from the input places and are held for a time, 7/(<j), after which the tokens

are sent to all the output places. Transitions in TPN can be viewed as a list of

events where multiple sets of tokens can be at different stages of the time delay. The

firing and termination occur during the processing time and at the end of the

execution, respectively.

www.manaraa.com

17

A transition associated with time is graphically represented using a bar

[], which indicates that a token stays in that transition for a processing time r]{^).

Figure 4(a) shows a timed Petri net example using a robot. In the figure, transition

f J hcis an associated process time A. The entire model is controlled through the use of

a global clock to time events. The transition has a time delay of A before firing. If

multiple transitions become enabled, they fire simultaneously. In Figure 4(a), when

the job and the robot are both available, the firing execution of the transition i j

occurs during process time A. Process time A represents the time it takes for the

conveyor to move a part to the robot. Figure 4(b) shows the TPN equivalence for

the firing time of the transition that can be associated with the place p(a) in the

following manner: When transition ti \s enabled to fire, t(a) fires, a token is removed

from each input place of t(a), and a token is deposited on place p(a). This token

stays in p(a) for the process time A. At the end of this interval, transition t(b) fires,

corresponding to the termination of the transition

The TPN studied by Ramchandani has deterministic processing times with tran­

sitions and approximate bounds on the transition firing rates for more general TPN.

That study was generalized by Sifakis, who considered deterministic processing time

and obtained the same results as Ramchandani, but Sifakis handled more general

Petri nets with multiple arcs between nodes. Sifakis showed that the distinction be­

tween associating processing times with transitions or with places was not important,

since one type of TPN can be converted into the other. However, Sifakis' work is

effective for the case of the deterministic processing time, but not for the random pro­

cessing time. Ramamoothy and Ho [12] showed how to obtain the same results given

by Sifakis and Ramchandani. Cohen et al. [13] showed that decision-free TPN with

www.manaraa.com

18

deterministic processing times can be analyzed by using (max, +) algebra results.

Another aspect of TPN was introduced and demonstrated by Merlin [14] and

Menasche [15], respectively. Merlin states the fixed duration d of an event can be

simply modeled as [d,<}]. The basic PN formalism can be represented as a special

class where the bounds on all events are [0, oo].

ROBOT IS IDLE

PROCESS TIME A t(b) t(a)

JOB WATTING FOR PROCESSING

2(a) 2(b)

Figure 2: Timed Petri net example: (a)timed Petri net example using a robot,
(b)timed Petri net equivalence

Merlin's analysis of TPN begins with the enumeration of the token machine of

the nontimed PN. Then by using the time information in the TPN, deleted selective

parts of the token machine. The result was inspected to verify certain properties that

characterize a well-behaved telecommunication protocol.

But this sort of analysis is unsuitable when the systems exhibit much concur­

rency. For example, consider two transitions ^2 firing delay [0,4],[2,5] that

were enabled together. If we call that time instant 0, the may fire immediately,

while <2 must wait at least until time instant 2 to fire ; however, both transitions

www.manaraa.com

19

might fire together at the time instants 2,3,4. Therefore, the number of possible

combinations of firing for even these two transitions is large. But the transitions may

fire in parallel, implying that their firings are not related.

Some of the works discussed above can be extended to analyze TPN with random

processing times by replacing these times by their expected values. However, the

results obtained in this way provide only very loose approximations of the average

firing rate. Several researchers have tried to remedy this situation by converting

the TPN into an equivalent Markov chain and then analyzing the resulting Markov

chain. Zuberek [16] was the first researcher to perform this transformation and was

able to analyze a stochastic timed Petri Net (STPN), which only allowed very simple

decision rules bcised on independent probabilities. Razouk and Phelps [17] extended

Zuberek's work to STPNs that can model time-out situations where the completion

of one activity may disable others, and to slightly more complex decision situations.

The decision rules are still based on independent probabilities. Both of these articles,

however, fail to show that the resulting Markov chain has a well-defined steady-

state probability distribution, and their procedures are applicable to only very small

problems.

Molly [18] solved somewhat larger problems by associating exponential process­

ing times with transitions and by specifying a decision rule that stated that the tran­

sition whose processing time terminates first would fire. Marson et al. [19] extended

Molly's results to manage transitions with zero processing times.

As indicated before, the main weakness of all works mentioned above is that they

need to construct an equivalent Markov chain modeling the evolution of the marking

of the net to find the performance measures of interest.

www.manaraa.com

20

Colored Petri Net

Colored Petri net (CPN) is an extension to ordinary Petri nets in which colors

are associated with tokens, and transitions fire according to a set of rules that match

the appropriate colors. A colored token is analogous to a subscripted variable. The

advantage of colored Petri nets is that they provide compact models of large systems.

Jensen has introduced and defined the CPN [20-23], whose main ideas are the

relation between an occurrence color and token colors (which were involved in the

occurrence of the transition). The relation is defined by functions attached to the

arcs [21]. In addition, the CPN attaches a set of possible token colors to each place

and a set of possible occurrence colors to each transition. The CPN can be defined

in the following ways.

A CPN is a six-tuple, CPN = (P,T,C, /_,/^,MQ), where C is the color function

that can be defined from PUT into nonempty sets, and color function can be

attached to each place and to each transition as mentioned before. Also /_ and

7^. are the negative and positive incidence-functions defined on P x T, such that

/_(p,t), 7.^(p,t) G (a set of possible occurrence colors to each transition —> a set of

possible token colors to each place). The initial marking Mg is a function defined on

P, such that Mg(p) G a possible set of token-colors in each place.

A CPN graph can be drawen with two disjointed sets of nodes (places and

transitions). Any pair of a place and a transition may be connected with a set of

directed arcs. There exists a set of typed variables that has a name and a type.

Moreover, each arc has attached to it an arc expression, containing a set of variables.

Each place p has attached to it a nonempty set of token colors and initial markings,

and each transition has attached to it a predicate circumspect that can only contain

www.manaraa.com

21

those variables which are already in the immediate surrounding arc expressions.

The CPN allows the modeler of systems with repetitive processes to view a

smaller network in which tokens have changed color to indicate process steps, assign

attributes, or differentiate between tokens. The primary function of CPN is data

management. The structure of the Petri net systems are not affected nor are the

reachability trees or analysis questions. The color of tokens is just another data item

carried in the markings. The colors represent levels of activity or the number of

times the part has moved through the process. This model concept is also useful

when several parts must be processed through the same system. An example occurs

in electronic chip manufacture where wafers being fabricated pass through five basic

processes many times adding layers of new material onto existing layers. The pro­

cesses are represented by states, the pass number is represented by the color of the

tokens, and the transition represents the movement between processes.

Viswanadham and Narahari [24] give two detailed examples on the use of CPNS

in automated manufacturing. The first is concerned with the modeling and analysis

of two machines that process two part-types. The machines and three robots process

the two part-types by using a limited number of shared tools.

Alia and Ladet [25] illustrated the use of CPN as a modeling, validation, and

simulation tool by using a flexible manufacturing line with first-in first-out queues.

Martinez et al. [26] turned their attention to the level above the local control:

the coordination (cell) level. Monitoring and real-time scheduling was the third level.

By using the Renault flexible manufacturing system (FMS) layout, a CPN model for

the co-ordinator was derived and analyzed. To solve any conflicts in the local control

level model, the researchers suggested the use of an expert system, especially since

www.manaraa.com

22

production rules can be modeled by using the CPN. Also, fault (or error) detection

and recovery can be similarly modeled, either at the same or higher levels.

Gentina and Corbeel [27] proposed the use of structured adaptive and structured

colored adaptive Petri nets to model FMS and their control systems, at the two lowest

levels. The third level was modeled as a rule-based (declarative) expert system. The

method of analysis and validation is illustrated by using an FMS.

Using a similar approach of the CPN, Choi and Kuo [28] represented token color

as token shape, indicating the identity of a product, part, and resource, and the

like, in manufacturing systems. For example, a place can have one or more token

shapes that represent a set of different resources. These sets can be used to model

a system with n different resources that provide different capabilities. A transition

can fire with respect to each of these shapes. Transition firing follows the rules of

ordinary Petri nets except that token shapes must match. In other manufacturing

environments, there is a many-to-many mapping between product type and resource.

This mapping is a direct result of capability requirements of products and available

capabilities of resources. If different products (representing different token shapes)

require one resource, then the transition cannot fire because the token shape is not

matched. We then assign letters to the tokens {a, b, c, ... , x, y, z representing

different capabilities). In this case, the transition firing rule will be changed as

follows; (1) basically, a transition can fire with respect to the same token; (2) when a

different token shape is matched, transition firings follow the rules of ordinary Petri

nets except that the letter much be checked. If the letter is matched with the different

token shapes, then the transition can be fired.

www.manaraa.com

23

Stochastic Petri Nets

In stochastic Petri nets (SPNs), places represent resources and transitions rep­

resent operations that are associated with random-operation time variables. The

stochastic behavior must be completely defined by a set of rules associated with the

choice of the next transition to be fired in a given marking [29-31]. The SPN has

been defined by many authors who have attempted to extend the modeling power

of the SPN by assigning different versions of variable times with the transitions, for

example, zero time and exponentially distributed random variables. These occur in

Generalized Stochastic Petri nets, in random variables with different distributions

allowing inhibitor arcs, in probabilistic arcs (extended SPNs) [32] and in stochastic

activity networks [33]. In this paper, extended SPN so-called generalized stochastic

Petri nets (GSPN), is introduced in the following ways; A GSPN has eight-tuple,

GSPN = (P,T,Pr,I,0,Inh,Sc, Mq), where the priority function Pr represents the

priority level of any transitions 6 T, the inhibition function Inh is represented by

circle-headed arcs connecting every place pj to the transition [32], and Sc is the

stochastic function of the GSPN and 5cj (i.e., random variables assigned for any

transition 6 T). The dynamic operation of a GSPN is equivalent to the behavior

of a continuous-time stochastic process [34].

The stochastic Petri net was initially defined by Molloy [35] in following two

classes of firing distributions: (1) exponential for the continuous time systems and

(2) geometric for discrete time systems. These distributions are memory-less in the

following sense. Consider a marking in which several transitions are enabled. If the

firing delay of each such transition is modeled in an exponential and geometric way,

then when one transition fires, the distribution of the time delays associated with

www.manaraa.com

24

other enabled transitions remains unchanged. Molloy then demonstrated that such

stochastic PNs are isomorphic to continuous-time Markov processes and can therefore

by analyzed using classical Markovian techniques. In particular, a Markov chain can

be generated to describe the possible markings of the nets (i.e., the reachability set),

and the probabilities associated with moving from one marking to another. In this

way, the steady-state probability distribution of the markings can be computed using

Markovian techniques. Now using the marking probabilities and the number of tokens

in each place for each marking, we can obtain the token probability density function

that is the steady-state probability distribution of tokens in each place.

Molloy also has proposed a discrete-time stochastic PN [36] with a system-wide

clock to advance time in a discrete way. Since multiple transitions may fire at any

time step, the probabilities for each possible combination are determined. For each

such enabled transition, a conditional probability must be computed that it will fire

at the next time step (whether or not the other enabled transitions fire). Thus,

before the normal Markovian analysis can begin, the conditional probabilities must

be deconditioned.

Finally, let us consider the GSPN compared with queueing networks (QN) and

simulation. Simulation allows us to represent precisely a real time system but it is a

resource-consuming tool and the model validation is quite difficult. For example, per­

formance optimization of FMS with respect to a number of decision variables requires

a large number of simulation runs. Also multiple simulation and output analysis are

required to reduce the simulation error because of the randomness involved in system

operations (such as failure rates), and severing, arrival, and departure rate of the

queue. Thus the simulation method could be computationally very demanding [24].

www.manaraa.com

25

However, GSPNs are graphical models and provide a compact framework for mod­

eling and validating, a convenient way to express system behaviors, and a suitable

mathematical and/or statistical analysis.

Another analytical model of systems is a QN that takes into account system dy­

namics, interactions, and uncertainties inherent in versartile systems. Also efficient

computational algorithms are available for solving QN models. However, QN only

allows modeling purely parallel behaviors. In other word, complex qualitative behav­

iors (synchronization schemes) cannot be described in the basic QN model, compared

with SPN or GSPN that consider much more complex behavior [37].

Control Petri Nets

Petri nets can represent only two statuses corresponding to the token's existence

or nonexistence, while machine actions usually have plural status depending on the

results of their execution. To avoid this problem and to apply the Petri net model

for describing sequence control specifications, control nets will be introduced.

Control Petri nets (CPN) are a modified form of the ordinary Petri net(P,T,I,0)

where I and 0 represent input and output arcs by Murata, et al [38,39]. Before these

studies, Valette, et al. [40] proposed Petri net-based sequence description languages

and executed them directly on a microcomputer-based controller without applying

for real process control and examination to evaluate their response time in real- time

control.

CPN model Control Petri net (CPN) models are introduced based on initial

works [15-18] as defined by the tuples CPN = (P,T,I,0, S, ip, ?/, 0, t, U,V,M), where

www.manaraa.com

26

U, V (system status functions) represent execution status at places and transitions,

and S, (p, T], 6, d, and i (input-output process functions) represent process status. The

system status functions allow supervision of the execution status and management of

the transition and place statuses, and input-output process functions are used to allow

an operator direct control of token movement in the system. This is an example of

modeling enhancements quickly limiting the decision and analysis attributes of Petri

net models. In order to define a corresponding place and transition in a CPN and

the controllable and observable process in a FMS, several functions are needed as

follows.

• Definitions

Let C be a set of control signals (cj) and 0 be a set of observable signals (ojj);

similarly let CH be a set of checking signals (c/ij) and J be a set of judgment

signals (j^). Input-output process functions <5:T—>Cy5;T—+O0:P—> CH

are defined as follows:

%) = ci,{ciec,tieT)

fi^i) ~) ®i2' • • •' "in' ^ ^ '^)

vi^i) ~ ^ T)

0{pi) = chi,{chi e CH,Pj e P)

^{Pi) ~ JiXijilf • • ^ ^ ̂)

(1)

(2)

(3)

(4)

(5)

(6)

www.manaraa.com

27

• Input process function

When a token enters into a transition a control signal Cj defined by S(i^)

triggers a machining action. Then the token waits to fire in a transition until one

of the input signals defined by is shown for completion of a machining

action. Input signal Oj^j defined by is used for firing a transition. After

detecting input signal the transition can fire and the token moves to its

output places.

• Output process function

The checking signal c/ij is defined by 0(pj) that corresponds to plural statuses

on the basis of results of the machining actions in output places. By using the

checking signal ch^ , the checking operation is started. Also the token waits

to fire in a place until one of the input judgment signals shows completion of

a checking action like the input process function. The signals are defined

by 'd{p^) that corresponds to its completion of a judgment, including quality

specifications. Input signal j^j, defined by t(pj), is used for firing a place. After

detecting an input signal a place can fire and the token move to its output

transitions.

• Process status functions

In order to define the execution status at a transition and a place, and in order

to manage the transition and place the open and close statuses and the process

status functions [15] The parameters U:P G L(L =0,1, ..., m), V:P in N(N

=0,1) are introduced as follows:

www.manaraa.com

28

Uih) =
in action associated with is executing now

out action associated with t; is completed with return code o.
(7)

in

U{Pi) =
in checking associated with (pj) is executing now

out checking associated with (p^) is completed
(8)

V{ti) =
close tj^ is closed

open is opened
(9)

V{Pi) =
close Pi is closed

' (10)

open Pi is opened

When an output signal q defined by 5{ti) has been put out in the transition,

U(ij) is set at in. When one of the input signals o^j defined by is detected,

U(f^) is set at the value of o%it. If an input signal o^j defined by has not

been detected, the value of V(fj) is set at 0; otherwise, V{tj) is set at open.

Similarly, after the token in transition is moved into its output places, if an

output signal chĵ defined by (̂pj) has been checked, then U(pj) is set at in,

otherwise U(pj) is set at out. If an output signal defined by q has not yet

been detected, the value of V(Zj) is set at 0; otherwise, V(<j) is set at open.

By introducing these functions, execution statues or transition operation modes

can be supervised and controlled at a place and transition. In this paper, places

and transitions are called CPN-transitions and CPN- places (represented by the

www.manaraa.com

29

fat box and the fat circle) since the process input-output functions and process

status functions can be defined at places and transitions.

• The token firing rule in CPN-transitions and CPN-places

A token in all input CPN-places of the transition G T can be enabled at

each marking M(pj)=l, if and only if,

V{pj) = open, and (11)

U{pi) = out

A token in CPN-transition L- G T can be enabled if and only if,

V{ti) = open, and (12)

U{tj) = out

• Other functions

We have more complicated sequence control specifications for the machining

processes such as conditional branches based on the result of a machining action

and timing control. A CPN place can have several output transitions and the

output transition to be fired is selected according to the result of machining

actions. In addition, a time value can be assigned to the token and can be used

to evaluate time factors such as production time and rate.

www.manaraa.com

30

Neural Petri Nets

Another extension of Petri nets is from the biological brain, for example, se­

quential, parallel, interconnected, and self-organizing systems. More specifically, we

extend the Petri nets to recognize aspects of brain architecture and its processing.

The basic brain-processing unit is the nerve cell, called the neuron, which has the

basic components such as the axon, synapse, cell body, dendrites; the cell's functions

and dynamics processing have been examined to developed the model representing

the brain system [41].

The Petri net has been chosen as the basis for the model since the type of struc­

ture and behavior it represents corresponds to the functioning of the fundamental

neural elements in the human brain. The basic neural Petri net (NPN) has been

defined by Zargham and Tyman [42] to accommodate all the elements of the neural

system cis follows;

A neural Petri net is a system N = (P,T,A,S,F,q,n,g,h,c)

where:

— P is a finite nonempty set of distinctly labeled places {p|, p2, ..Pn)-

— T is a definite nonempty set of distinctly labeled transitions (i|, <2) • • - i

tn)-

— A is a relation which corresponds to a set of arcs where each arc is either

from a place to a transition or from a transition to a place A.

— S is a finite, nonempty set of starting (or initial) places that is a subset of

P-

— F is a finite, nonempty set of final (or output) places that is a subset of p.

www.manaraa.com

31

— q is a real number that indicates the lifetime of a token in a place.

— n is an integer number that indicates the minimum number of tokens

required to fire a transition.

— g is a function that calculates the total token value in each place at every

unit of time.

— h is a function that associates a color with each output arc of a transition.

1 9 — c is a set of two colors c and c to represent two classes of tokens.

The body of a neuron is represented by a place. Each neuron has its own

membrane potential; the membrane potential is represented by a transition that has

only one input place. The output arcs, from a transition to its output places, represent

the axons of the neuron represented by input place of the transition. To represent

the fact that an axon transmits either an excitatory postsynaptic potential and an

inhibitory postsynaptic potential at the synapse, an output arc will be assigned a

color. Each axon synapse has only one neuron, but a neuron may have numerous

axons. Therefore, a transition may have numerous output places [41,42].

The firing of a transition corresponds to the generation of an action potential

in the associated input place. As a consequence of the firing of a transition, a token

appears in each output place of the transition. The token has the same color as the

output arc of the transition on which it was transmitted [42].

Using the NPN, researchers can model the physiology and the structural consti­

tution of the brain functions and apply this to computing systems and manufacturing

systems. However, the NPN that was developed and introduced in [42] is a beginning

stage for simplification of certain neural processes.

www.manaraa.com

32

ANALYSIS OF PETRI NETS

A major reason for using Petri nets versus other modeling systems is the abil­

ity to test and validate a system. Liveness, boundedness, safeness, invariants, and

reachability are measures of effectiveness for the Petri nets.

Definition J: A PN is live with respect to an initial marking MQ if from any

marking in MQ, there exists for each transition a firing sequence leading to a marking

in which that transition is enabled.

Definition 2: A PN is safe or 1-bounded if the token count of every place is

always 0 or 1.

More specifically, if the number of tokens in all places is always bounded by

some finite value k, then the PN is called k - bounded. The boundedness in PN is

determined by whether or not a given PN is bounded for a given initial marking.

Definition 3: A PN is conservative if there exists an n non-negative integer

vector X such, that

M = Mq (13)

for any initial marking MQ and a reachable marking M 6 R(MQ). This indicates that

the sum of the tokens weighted by x is constant.

Definition 4- A PN is reversible if for every M G R(MQ); then MQ E R(M). This

indicates that the initial marking is reachable from all reachable markings.

Invariants

Other important properties of the logical structure of a PN are invariants that

characterize in some way all possible firing behaviors. There are two kind of invari­

www.manaraa.com

33

ants, so-called p-invariant and i-invariant. P-invariants are associated with places

and represent unchanging truths about sets of conditions, such as mutual exclusion.

Conversely, i-invariants are associated with transitions and represent collections of

transitions that leave the marking of the PN unchanged after firing of transitions.

These invariants can be analyzed based on the incidence matrix A. For a PN is de­

scribed in Section 2.1.1, the incidence matrix A (=o^' - is an m x n matrix of

integers defined as A = a^j, i = 1,2 m(transitions) and j = 1,2 n(plares). The

invariants of a PN may be obtained as the integer solutions to the following equations:

where W be a n x 1 column vector that indicates the weighted sum of token in a PN.

Deadlock occurs when a transition cannot fire and no sequence of transition

firing will take the net to a marking that allows the transition to fire. A Petri net is

live if there is no deadlock [1,2].

Reachability Tree

A reachability tree is generated from an initial marking by firing enabled transi­

tions. Reisig [43] and Peterson [2] discuss this in detail. Essentially, if the reachability

tree shows no infinite markings (places containing or having the potential to contain

an infinite number of tokens) then the tree is bounded and safe. The reachability

tree is a finite representation of the usually infinite reachability set from an initial

marking of the Petri net.

T A W = 0, for p-invariants (14)

AW = 0, for ^-invariants (15)

www.manaraa.com

34

The reachability problem deals with the ability to reach a marking from an

initial marking. Although the reachability problem is extremely difficult to solve,

recent results seem to indicate that it is solvable. Thus, although the problem can

be solved in general, it may take too much time and money to be worthwhile. Other

problems, such as the equality of the reachability sets of two Petri nets(useful for

considering equivalence and optimization), are known to be unsolvable.

www.manaraa.com

35

APPLICATIONS OF PETRI NETS

Petri Net Models for Production Systems

Applications of Petri nets in the manufacturing are varied. The usefulness of

FN logic in system design, control, testing, simulation, and analysis is demonstrated

using FN systems.

Petri's 1962 dissertation [1] in 1972 came to the attention of project MAC at

MIT; numerous reports and dissertations resulted. Hack [44] brought together the

many facets of the production environment and provided a broad approach to manu­

facturing systems overview and design in Fetri nets. Most importantly, the work de­

scribes the use of free choice Fetri nets and their definitions. This work puts together

the nuts and bolts of production schemata and is the seminal work relating Fetri nets

directly to a manufacturing environment. Since that time, work has branched into

several different areas such as manufacturing systems, flexible manufacturing systems

or cells, and controllers.

The next particular interest is two subclasses of the FN. The FN is defined as

a marked or event graph when each place has just one input and output transition.

The marked graph may model a deterministic system because each condition can

only become true in one way and can have one consequence. The marked graphs are

useful for modeling because the firing of a single transition may change the truth of

multiple conditions.

Conversely, the FN is defined as a state machine when each transition has just

one input and output place. The state machine is useful for modeling limited forms

of conflicts, since a given condition may enable multiple events.

www.manaraa.com

36

Robotics and flexible manufacturing systems The need for formal models

in robotics was recently discussed [45]. The simplest model is the condition event

(C/E) PN in which the robotic operations to be executed are presented as events

whose interdependencies are expressed as conditions. Events are then associated

with transitions and conditions with places in the PN. The presence of a token in a

place indicates that the corresponding condition is true. The marking describes the

state of the PN in term of conditions that are true or not.

In addition, tokens might represent the number of input parts waiting at the

head of an assembly line or the number of spaces available in a storage. In this case,

subtracting a token from a place by firing a transition and adding to a place does not

necessarily make a condition true or false.

However, when the system is composed of many operating elements as in an

FMS, the large numbers of conditions and events required for modeling prefer colored

PN [21,22,46]. Tokens are now interpreted as variables representing different classes

of objects whose individuals are represented by different colors. Some examples of

FMSs working with colored PN are described in [47-50].

To date, most of the published PN-related research has been concerned with

the routing of parts and tool magazines between work cells within an FMS with

deterministic events.

Petri Net Based Controllers

Design and implementation Houldsworth and Brearly [51] state that pro­

grammable logic controller (PLC) functions can be enhanced using a Petri net-like

programming system and a structured method of programming. The authors main­

www.manaraa.com

37

tain that good methods and a graphical approach to programming are used effectively

with a personal computer to provide good documentation of the system.

Many other researchers have studies the implementation of PN. Brand and

Kopainsky [52] and Bruno and Marchetto [53] have used Petri nets as the basis

for process control design. Gentina and Corbeel [27] proposed a modified net system

for the synthesis of FMS control. Devanathan et al. [54] developed computer-aided

design of relay ladder logic (RLL) using state diagrams. Krogh and Beck [55] in­

vestigated the use of nets for simulation of manufacturing systems and Krogh, et al

[56] proposed using Petri net and microcomputers to generate programming for PLC

functions keeping a data-base of used and available data points. The work of Ref

56 allows the retention of RLL but keeps the programming level at a higher level

language. Lloyd [57] discusses GRAFACT, a program which uses Petri nets as a

basis for PLC programming. These researchers promote a function block approach

to states and transitions. The elemental functionality of PNs is not considered or

demonstrated; only their higher order modeling is used. The function blocks and

transitions are evaluated or fired based on RLL written at a lower level. Martinez, et

al [58-60] developed a language for describing concurrent systems such as FMSs and a

package for computer design of concurrent logic systems. They discussed using Petri

nets to specify of FMS. Matsuzaki et al. [61] used a GRAFCET-like Petri-structured

programming system similar to BASIC and reported increases in software productiv­

ity of 50% to 100% over RLL, as did Murata, et al [38] who reported a 50% steff-hour

reduction in software development time from RLL by using their PN-oriented lan­

guage.

www.manaraa.com

38

Controllers Chocron and Cerny [62] have provided the first example of imple­

ment of a PN- based controller. Their example is paralleled by the work of Courvoisier

et al. [63,64] in developing a PN based-controller on a ZSO-based computer. Natu­

rally, this implementation is slow due to the CPU speed and memory size. Advances

in semiconductors is expected to improve the processing time. Meanwhile, Murata

et al. [38,39,65] have presented work on a PN-based controller implementation on

a large CPU controlling a FMS cell. Their findings indicate good control and quick

comprehension of the graphics used in the control monitor allowing rapid fault detec­

tion and repair with increases in software productivity of 50% over the RLL systems.

Crockett et al. [66] expanded upon all of the previous work to implement a PN-based

controller at a higher level of control, generating software control commands used to

interact with hardware signals.

Performance Analysis

The Petri net model of manufacturing systems is not sufficient to answer performance-

related questions. TPN can be used to analyze performance of computer systems and

manufacturing systems. In TPN, the firing of a transition takes a certain amount of

time that is deterministic. The same properties of the ordinary Petri nets can applied

to TPN.

The stochastic Petri nets, which have the transition with randomly distributed

firing rates, also can be used to analyze performance of the computer system and

of the automated manufacturing system. In addition, STPN has modeling power as

well as the powerful ability to build analogies based on the initial marking; thus, the

reachability tree can be generated and the equivalent Markov chain can be obtained

www.manaraa.com

39

and analyzed.

Chiola [67] has developed software called Great SPN for the construction and

analysis of complex, generalized SPN models. This software accepts deterministic

delays or exponentially distributed firing rates. It also computes the transient and

steady-state solutions to the Markov chains. Dugan et al. [68] have developed the

Duke extended SPN evaluation package (DEEP) for performance analysis of SPN

models which in turn led to a more recent version [69]. Holliday and Vernon [70]

have developed the Great TPN analyzer for the performance evaluation of generalized

timed Petri net models.

www.manaraa.com

40

REDUCTION OF PETRI NETS

In some cases, modeling a system with Petri nets can lead to a large number

of places, transitions, and arcs. To obtain insight into the operation of the original

system, it is desirable to find a net with fewer places, transitions, and arcs that

retains the liveness and boundedness properties of the original Petri nets model.

By studying and analyzing the reduced Petri net, it is possible to make conclusions

about the token flow and structural properties of the original Petri net. Several

authors [71-75] proposed reduction methods to accomplish this for generalized Petri

nets. The goal of the reduction method is to establish a set of rules for combining

places, transitions, and arcs that preserves the number and direction of flow of tokens

in the original Petri net. The flow of tokens into and out of a reduced Petri net must

be the same as in the portion of the original Petri net that has been replaced.

In Refs. [71-75], researchers developed generalized Petri net reduction methods

for real applications of the Petri net models that will become large. Consequently,

model reduction methods are needed to help avoid the the reachable state explosion

problem. The authors also present an application to a complex FMS that was orig­

inally modeled with 92 places, 59 transitions, and 174 arcs. Their method was used

to find 12 transitions and 20 places of the reduced Petri net, which allowed them to

analyze the original system. The results of the reduction suggested five subsystems

for the flexible manufacturing system.

www.manaraa.com

41

BIBLIOGRAPHY

[1] Petri, C.A., "Kommunikation mit Automaten," Ph.D. dissertation. University
of Bonn, Bonn, West Germany, 1962.

[2] Peterson, J.L., Petri Net Theory and the Modeling of Systems, Prentice Hall,
Englewood Cliffs, N.J., 1981.

[3] Kamath, M., and Viswanadham, N., "Applications of Petri Net Based Models in
the Modeling and Analysis of Flexible Manufacturing Systems," Proceedings of
the 1986 International Conference on Robotics and Automation, IEEE Computer
Society Press 1, 312-317, New York, 1986.

[4] Agerwala, T., "Some Applications of Petri Nets,'" Proceedings of the National
Electronics Conference XXXII, Tranter, W.H., Ed, National Electronic Consor­
tium, Inc, Vol 32, 149-154, Chicago, 111, 1978.

[5] Al-Jaar, R.Y., and Desrochers, A.A., "Petri Nets in Automation and Manufac­
turing," in Advances in Automation and Robotics(ed. G.N. Saridis), JAI press,
Greenwich, Conn., Vol 2, 1989.

[6] Al-Jaar, R.Y., and Desrochers, A.A., "A Survey of Petri Nets in Flexible Manu­
facturing Systems," Proceedings of the 1988 IMACS Conference, Paris, France,
July 1988.

[7] Barad, M., and Sipper, D., "Flexibility in Manufacturing Systems:Definitions
and Petri Net Modeling," Int, J. Production Res. Vol 26(5), 237-248,1988.

[8] Beck, C., and Krogh, B., "Models for Simulation and Discrete Control of Man­
ufacturing Systems," Proc. IEEE Int. Conf. Robotics Automat, 305-310, 1986.

[9] Kodate, H., Fujii, F., and Yamanoi, K., "Representation of FMS with Petri
Net Graph and its Application to Simulation of System Operation," Robotics
Computer Integrated Manufact., Vol3(3), 275-283, 1987.

[10] Ramchandani, C., "Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets," Technical Report No.120, Laboratory for Computer Science, M.I.T.,
Cambridge, Mass, 1974.

[11] Sifakis, J., "Performance Evaluation of Systems using Nets," Net Theory and
Applications (Lecture Notes in Computer Science), Springer-Verlag, Berlin, Ger­
many, 307-319, 1978.

www.manaraa.com

42

12] Ramamoothy, C.V., and Ho, G.S., "Performance Evaluation of Asynchronous
Concurrent Systems using Petri Nets," IEEE Transactions on Software Engi­
neering, SE-6(5), 440-449, 1980.

13] Cohen, G., Moller, P., Quadrat, J.P., and Viot, M., "Linear System Theory for
Discrete Event Systems," Proceedings of 23rd IEEE Conference on Decision and
Control, Vol 1, 539-544, 1984.

14] Merlin, P., "A Methodology for the Design and Implementation of Communica­
tion Protocols," IEEE Trans. Commun., 614-621,1976.

15] Menasche, M., "Parede:An Automated Tool for the Analysis of Time(d) Petri
Nets," Proceeding IEEE Int. Workshop Timed Petri Nets, Torino, Italy, 162-169,
July 1985.

16] Zuberek, W.M., "Timed Petri Nets and Preliminary Performance Evaluation,"
Computer Architecture News, Vol 8(3), 88-96, 1980.

17] Razouk, R.R., and Phelps, C.V., "Performance Analysis using Timed Petri
Nets," Protocol Specification, Testing, and Verification, eds. Y. Yemini, R. Storm
and S. Yemini, 561-576. North-holland; Elsevier Science Publishers, 1982.

18] Molly, P. M., "Performance Analysis using Stochastic Petri nets," IEEE Trans­
actions on Computers, C-31(9), 913-917, 1982.

19] Marson, M. A., Balbo, G., and Conte, G., "A Class of Generalized Stochastic
Petri Nets for the Performance Evaluation of Multiprocessor System," ACM
Transactions On Command Systems, Vol 2(2), 93-122, 1984.

20] Huber, P., Jensen, A.M., Jepsen, L. 0., and Jensen, K., "Reachability Tree for
High-Level Petri Nets," Theoretical Computer Science, 45, 1986.

21] Jensen, K., "How to Find Invariants for Coloured Petri Nets," Lecture Notes in
Computer Science, Vol 118, Springer-Verlag, 327-338, 1981.

22] Jensen, K., "Colored Petri Nets," Net Theory and Applications (Lecture Notes
in Computer Science), No.254, Springer-Verlag, Bad Honnef, Germany, 248-299,
1987.

23] Jensen, K., "Colored Petri Nets and the Invariants-Method," Theoretical Com­
puter Science 14, 317-336, 1981.

www.manaraa.com

43

[24] Viswanadham, N., and Narahari, Y., "Colored Petri Net Models for Automated
Manufacturing Systems," Proceedings of the 1987 IEEE Internation Conference
on Robotics and Automation, Raleigh, N.C., 1985-1990, April 1987.

[25] Alia, H., and Ladet, P., "Colored Petri Nets:A Tool for Modeling, Validation, and
Simulation of FMS," in Flexible Manufacturing Systems: Methods and Studies,
271-281, Elsevier, New York, 1986.

[26] Martinez, J., Muro, P., and Silva, M., "Modeling, Validation and Software Im­
plementation of Production Systems Using High Level Petri Nets," Proceedings
of the 1987 IEEE International Conference on Robotics and Automation Raleigh,
N.C., 1180-1185, April 1987.

[27] Gentina, J.C., and Corbeel, D., "Colored Adaptive Structured Petri Net: A Tool
for the Automatic Synthesis of Hierarchical Control of Flexible Manufacturing
Systems," Proceedings of the 1987 IEEE International Conference on Robotics
and Automation Raleigh, N.C., 1166-1173, April 1987.

[28] Choi, B.W., and Kuo, Way., "Petri Net Extensions for Modeling and Validating
Manufacturing Systems," Int. J. Prod. Res., (accepted for the publication)

[29] Beyaert, B., Florin, G., Lone, P., and Natkin, S., "Evaluation of Computer Sys­
tem Dependability using Stochastic Petri Nets," Proceeding of the 11th Inter­
national Symposium on Fault Tolerant Computing(FTCS-l 1), Portland, 24-26,
June 1981.

[30] Shapiro, S.D., "A Stochastic Petri Net with Application to modeling Occupancy
Times for Concurrent Task Systems," Networks, Vol 9, 1979.

[31] Symons, F.J.W., "The Description and Definition of Queuing Systems by Nu­
merical Petri Nets," Australian Telecommunication Research, 13, 20-31, 1980.

[32] Dugan, J.B., Trivedi, K.S., Geist, R.M., and Nocola, V.F., "Extended Stochastic
Petri Nets," Applications and Analysis, Performance 84, Paris, France, 507-519,
December 1984.

[33] Meyer, J.F., Movaghar, A., and Sanders, W.H., "Stochastic Activity Networks;
Structure, behavior, and Applications," International Workshop on Timed Petri
Nets, Torino, Italy, 106-115, July 1985.

[34] Ajmone Marsan, M. et al., "Generalized Stochastic Petri Nets", Microelectron
Reliability, Vol 31(4), 698-723, 1991.

www.manaraa.com

44

[35] Molloy, M., "Performance Analysis using Stochastic Petri Nets," IEEE Trans.
Comput, Vol C-31(9), 913-917, Sept 1982.

[36] Molloy, M., "Discrete Time Stochastic Petri Nets," IEEE Trans. Software Eng.,
Vol SE-4(4), 417-423, Apr 1985.

[37] Florin, G., Fraize, C., Natkin, S., "Stochcistic Petri Nets: Applications and
Tools," Microelectron Reliability, Vol 31(4), 669-697, 1991.

[38] Murata, T., Komoda, N., and Matsumoto, K., "A Petri Net Based Factory
Automation Controller for Flexible and Maintainable Control Specifications,"
Proceedings of Conference on Industrial Electronics, Control and Instrumenta­
tion, IEEE Press, Vol 1, 362-366, New York, 1984.

[39] Murata, T., Komoda, N., and Matsumoto, K., "A Petri Net-Based Controller
for Flexible and Maintainable Sequence Control and its Applications in Factory
Automation," IEEE Transactions on Industrial Electronics, Vol IE-33(1), 1-8,
Feb 1986.

[40] Valett et al., "Putting Petri Nets to Work for Controlling Flexible Manufacturing
Systems," Proceedings of ISCAS'85, 929-932, June 1985.

[41] Kent, E.W., "The Brains of Men and Machines," McGraw-Hill, New York, 1981.

[42] Zargham, M.R., and Tyman, M., "Neural Petri Nets" (Unpublished manuscript)

[43] Reisig, W., Petri Nets: an Introduction, Springer Verlag, Berlin, West Germany,
1985.

[44] Hack, M.H.T., "Analysis of Production Schemata by Petri Nets," Technical Re­
port 94 Project MAC, Massachusetts Institute of Technology, Cambridge, Mas­
sachusetts, 110, 1972.

[45] Lyons, D., and Arbib, M., "A Formal Model of Computation for Sensory-Based
Robotics," IEEE Trans. Robotics Automat., Vol 5(3), 280-293, June 1989.

[46] Genrich, H., and Lautenbach, K., "System Modeling with High Level Petri
Nets," Theoretical Comput. Sci., Vol 13, 109-136, 1981.

[47] Alia, H., Ladet, P., Martinez, J., and Silva, M., "Modeling and Validation
of Complex Systems by Colored Petri Nets: Application to a FMS," Lecture
Notes in Computer Science No. 188: Advances in Petri Nets, Proc. 5th Euro­
pean Workshop on the Application and Theory of Petri Nets, Aarhus, Denmark,
New York, Springer-Verlag, 15-31, 1984.

www.manaraa.com

45

[48] Corbeel, D., Gentina, J. C., and Vercauter, C., "Application of an Extension
of Petri Nets to Modernization of Control and Production Processes," Proc. 6th
European Workshop Application and Theory of Petri Nets, Espoo, Finland, June
1985.

[49] Gentina, J., and Corbeel, D., "Coloured Adaptive Structured Petri Net: A Tool
for the Automatic Synthesis of Hierarchical Control of Flexible Manufacturing
Systems," Proc. IEEE Int. Conf. Robotics Automat., 1987.

[50] Kasturia, E., Dicesare, F., and desrochers. A., "Real time Control of Multi­
level Manufacturing Systems using Colored Petri Nets," Proc. IEEE Int. Conf.
Robotics Automat., 1988.

[51] Houldsworth, P.A., and Brearly, D., "Programmable Controller Functions are
Enhanced by Structured Programming and Graphic Sequence Control Together
with Good PC Documentation," Proceedings of the Conference on Programmable
Controllers, Peter Lawrenson Editor, GAMBICA Programmable Controllers
Committee, London England, 129-134, 1985.

[52] Brand, K.P., and Kopainsky, J., "Principles and Engineering of Process Control
with Petri Nets," IEEE Transactions on Automatic Control, AC33(2), 138-149,
1988.

[53] Bruno, G., and Marchetto, G., "Process-translatable Petri Nets for the Rapid
Prototyping of Process Control Systems," IEEE Transactions on Software En­
gineering, SE12(2), 346-357, 1986.

[54] Devanathan, R., Kuan, F.Y., Chang, C.J., and Choo, S.A., "Computer Aided
Designing of Relay Ladder Logic via State Transition Digram," IEEE Interna­
tional Conference on Industrial Electronics, Control and Instrumentation, New
York, Vol 2, 764-772, 1987.

[55] Krogh, B.H., and Beck, C.I., "Synthesis of Place/Transition Nets for Simulation
and Control of Manufacturing Systems," IFAC/IFORS Fourth Symposium on
Large Scale Systems: Theory and Applications, Zurich Switzerland, Vol 2, 583-
589, August 1986.

[56] Krogh, B.H., Willson, R., and Pathak, D., "Automatic Generation of Control
Programs for Discrete Manufacturing Processes," The Robotics Institute Annual
Research Review, Carnegie Mellon University, 21-31, 1987.

www.manaraa.com

46

[57] Lloyd, M., "GRAFCET - Graphical Function Chart Program," Proceedings of
the Conference on Programmable Controllers Peter Lawrenson Editor, GAM-
BICA Programmable Controllers Committee, London England, 51-56, 1985.

[58] Martinez, J., and Silva, M., "A Package for Computer Design of Concurrent
Logic Systems," Proceedings of the Third IFAC/IFIP Symposium on Software
for Computer Control, Pergamon Press, Oxford England, 243-248, 1982.

[59] Martinez, J., and Silva, M., "A Language for the Description of Concurrent Sys­
tems Modelled by Coloured Petri Nets: Applications to the Control of Flexible
Manufacturing Systems," Language for Automation, Plenum Press, New York,
Chapter 8, 369-388, 1985.

[60] Martinez, J., Alia, H., and Silva, M., "Petri Nets for the Specification of Flex­
ible Manufacturing Systems," Modeling and Design of Flexible Manufacturing
Systems, Elsevior Science Publishers, Amsterdam, Chapter 8, 389-406, 1986.

[61] Matsuzaki, K., Hata, S., Junichi, H., Kurashima, Y., and Torii, M., "Petri-Net
Structured Sequence-Control Language with GRAFCET-Iike Graphical Expres­
sion for Programmable Controller," Proceeding of International Conference on
Industrial Electronics{\), New York, 1985.

[62] Chocron, D., and Cerny, E.A., "Petri Net Based Industrial Sequencer," lECI
Proceedings of Confererice on Applications of Mini aiid Microcomputers, IEEE
Press, New York, Vol 1, 18-22, 1980.

[63] Courvoisier, M., Valette, R., Bigou, JM., and Esteban, P., "A Petri Net Based
Programmable Logic Controller," Proceedings of the IFIP Conference on Com­
puter Applications in Production and Engineering North-Holland, New York,
103-116, 1983.

[64] Valette, R., Courvoisier, M., Bigou, J.M., and Albukerque, J.A., "Petri Net
bcised Programmable Logic Controller," Computer Applications in Produc­
tion and Engineering (CAPE 83), North-Holland Publishing, Amsterdam, The
Netherlands, 103-116, 12983.

[65] Komoda, N., Murata, T., and Matsumoto, K., "Petri-Net Based Controller: Scr
and its Applications in Factory Automation," IEEE International Symposium
on Circuits and Systems, New York, Vol 2, 937-940, 1985.

[66] Crocket, D.H., Desrochers, A.A., DiCesare,F., and Ward, T., "Implementation
of a Petri Net Controller for a Machining Workstation," Proceedings of a Con­
ference on Robotics and Automation 3, lEE Society Press, New York, 1861-1867,
1987.

www.manaraa.com

47

[67] Chiola, G., "A Graphical Petri Net Tool for Performance Analysis," Proceedings
of the 3rd International Workshop on Modeling Techiniques and Performance
Evaluation, AFCET, Paris, France, March 1987.

[68] Dugan, J. B., Bobbio, A., Ciardo, G., and Triverdi, K., "The Design of a Unified
Package for the Solution of Stochastic Petri Net Model," Proceedings of IEEE
International Workshop on Timed Petri Nets, Torino, Italy, 6-13, July 1985.

[69] Ciardo, G., "Manual for the SPNP Package," Duck University, Durham, N.C.,
July 1988.

[70] Holliday, M.A., and Vernon, M.K., "Generalized Timed Petri Net Model for Per­
formance Analysis," Proceedings of the IEEE International Workshop on Timed
Petri Nets, Torino, Italy, 181-190, July 1985.

[71] Murata, T., and Koh, J. Y., "Reduction and Expansion of Live and Safe Morked-
Graphs," IEEE Transactions on Circuits and Systems, Vol CAS-27(1), 68-70,
Jan 1980.

[72] Johnsonbaugh, R., and Murata, T., "Additional Method for Reduction and Ex­
pansion of Marked Graphs," IEEE Transactions on Circuits and Systems, Vol
CAS-28(10), 1009-1014, Oct 1981.

[73] Suzuki, I., and Murata, T., "A Method for Stepwise Refinement and Abstraction
Of Petri Nets," Journal of Computer and Sjjstem Sciences, Vol 27, 51-76, 1983.

[74] Lee, K. H., and Favrel, J., "Hierarchical Reduction Method for Analysis and
Decomposion of Petri Nets," IEEE Transactions on Systems, Man, and Cyber­
netics, Vol SMC-15(2), 272-280, 1985.

[75] Lee, K. H., Favrel, J., and Baptiste, P., "Generalized Petri Net Reduction
Method," IEEE Transactions on Systems, Man, and Cybernetics, Vol SMC-
17(2), 297-303, March/April 1987.

www.manaraa.com

48

PAPER II.

PETRI NET EXTENSIONS FOR MODELING AND VALIDATING

MANUFACTURING SYSTEMS

www.manaraa.com

49

ABSTRACT

In this paper, we begin with the fundamental constructs of Petri net models. We

then suggest extensions that help make Petri nets useful for modeling manufacturing

systems. We also show how validation methods can be used to examine these systems

for potential problems. Examples are presented to show how one might use this

approach to determine the performance and validate the logic of a manufacturing

system.

Keywords:

Extended Petri Net Models, Validation Method, Performance Analysis

www.manaraa.com

50

INTRODUCTION

A manufacturing system can be viewed as a large set of different entities inter­

acting in a complex manner. When we observe such a system, these entities exhibit

both deterministic and stochastic behaviors. The complex nature of this behavior

makes it difficult to model and evaluate, because one must consider factors such

cis capacity, resources, machine failure rate, and repair rate, in order to accurately

determine various performance measures such as production rate or work in process.

A variety of approaches exist for modeling manufacturing systems, such as those

proposed by Cohen [1], Nevins and Whitney [2], Hanssmann [3], and Malone and

Smith [4]. While these models provided insight into system behavior, they introduced

many restrictive tissumptions and tended to be computationally complex, making it

difficult to model and evaluate manufacturing systems in dynamic situations.

Petri nets have been used successfully to model, conti-ol, and analyze discrete

event dynamic systems that are characterized by concurrency or parallelism, asyn­

chronous processes, deadlocks, conflicts, and event-driven processes. Petri nets also

provide accurate models and efficient analysis methods because they (1) capture in­

teractions of concurrent and sequential events, (2) can be derived from the knowledge

of how systems work, (3) give concise models for conflicts and buffer sizes, and (4)

allow implementation of real time analysis [5,6].

Theories and applications of Petri nets have been studied by Peterson [6], Jensen

[7-8], Viswanadham and Narahari [9], Murata [10], Memmi and Roucairol [11], Gen-

rich and Lautenbach [12], and Chretienne and Carlier [13]. These studies provided

only partial representations of a manufacturing system, leaving out such characteris­

tics as multiple products, capacity, resource availability, failure rate, and priority.

www.manaraa.com

51

A distinctive advantage of Petri nets is the ability to test and validate the model.

This testing and validation process includes both determining if the model performs

correctly (e.g., no deadlocks or boundedness) as well as determining if the Petri net

accurately models the actual system.

A number of methods have been proposed for the validation of Petri net mod­

els. For instance, Peterson [8] introduced the reachability tree and matrix equation

methods; Jensen [7-8] describes the invariant-method; and Memmi [11] introduces

the algebraic meaning of the invariants. However, they considered relatively simple

models. Therefore, we need to examine these methods to see if they are applicable

to actual manufacturing systems.

Performance analysis of manufacturing systems provides a means of determining

system characteristics. Performance analysis of Petri net models has been studied

by Magott [14], Choi and Kuo [15], Hillion [16], Ramchandani [17], Sifakis [18], and

Arbel and Seidmann [19]. These studies show how measures such as the maximum

computation rate (minimum cycle time) and dynamic response time (including firing

schedules) can be determined.

Using previous studies as a starting point, we extend Petri net models by adding

elements for time, resource availability (number of resources, types of resources), type

of processes, multiple products (with and without priority), capacity (buffer size or

storage capacity limit), and failure rate (part defect or equipment breakdown). We

then show how these models(with extensions) can be applied to manufacturing sys­

tems. A validation procedure is presented along with examples. In addition, results

of a performance analysis using a Petri net model of a representative manufacturing

system are used to evaluate the system in order to identify areas for improvement.

www.manaraa.com

52

MODELING METHODOLOGY

Ordinary Petri Nets

A Petri net graph uses circles to represent places (states) and bars to represent

transitions (events). Input-output relationships are represented by directed arcs be­

tween places and transitions. Tokens reside at a place when it is active. Tokens flow

through the net depending on the present marking of the net. The marking of a Petri

net is contained in a vector of dimension n, where n is the number of places and each

value of the vector corresponds to the number of tokens in the corresponding place.

When there is a token in each of the input places of a transition, that transition is

enabled to fire. If the weights on each of the arcs between places and transitions are

equal to one, then the transition fires by removing a token from each of its input

places and by placing a token in each of its output places.

Figure 1(a) shows a Petri net example for accessing a robot. The tokens, places,

and transitions correspond to the various elements found in manufacturing systems.

Places usually represent resources (e.g., machines, parts, and data). A token in a

place indicates that the resource is available; otherwise it is unavailable. A place can

also be used to imply that a logical condition holds. Transitions are generally used

to represent the initiation or termination of an event.

Processing Time

With a set of simple constructs, Petri nets can model a wide variety of discrete

event dynamic systems. However, ordinary Petri nets do not account for the passage

of time. In most systems, timing is a critical factor for evaluating performance and

www.manaraa.com

53

validating control logic. For manufacturing systems, this is especially true because

time is an essential element in functions such as production scheduling and control.

Ramchandani [17] and Sifakis [18] introduced the notion of a Timed Petri net

(TPN). Ramchandani described a TPN as a pair (PN,/z), where PN is a Petri net and

/i is a vector of processing time functions that assigns a positive rational number to

each transition of the net. In a TPN model, each transition ij (after being enabled)

has a time delay of n{ti) before firing. The firing times must be rational so that we

can discretize the processing times in units of time and precisely describe the state

of the process at each instant of time. The rule of operation of a TPN is similar to

an ordinary PN. Once a transition is enabled, the tokens are removed from the input

places and are held for time /x(<^), after which the tokens are sent to all the output

places. Transitions in TPNs can be viewed as a list of events in that multiple sets of

tokens can be at different stages of the time delay. The execution of the model would

be controlled through the use of a global clock to time events.

A transition associated with time is graphically represented using a bar

[], which indicates that a token stays in that transition for a processing time

Figure 1(b) shows a timed Petri net example using a robot. Transition ti has an

associated delay time of A. When the conveyor and the robot are both available (i.e.,

a token is present in each place), the processing time for transition begins. The

time delay A represents the material handling time for the conveyor to move a part

to the robot.

www.manaraa.com

54

Resources

Capacity In manufacturing systems, one finds a number of limited resources,

such as machines and robots, that have the same process structure and behavior.

Each resource has a fixed number of tokens representing the total capacity. The

number of resource tokens in a place indicates the state of those resources (e.g., idle,

down, or busy).

Capability Resources are differentiated by their set of capabilities to perform

required functions. For example, a milling machine can be used to perform a family

of metal removal processes. A Petri net extension that is useful for modeling different

types of resources is called Colored Petri nets [7-8,12]. Using a similar approach, we

represent token color as a token shape, indicating the identity of a resource. A place

can have one or more token shapes that represent a set of different resources. These

sets can be used to model a system with n different resources that provide different

capabilities. A transition can fire with respect to each of these shapes. Transition

firing follow rules of ordinary Petri nets except that token shapes must match.

In other manufacturing environments, there is a many-to-many mapping between

product type and resource. This mapping is a direct result of capability requirements

of products and available capabilities of resources. If different products (representing

different token shapes) require one resource, then the transition cannot fire because

the token shape is not matched. We then assign Greek letters to the tokens (a, /3,

7, ... , Xj V*! representing different capabilities). In this case, the transition firing

rule will be changed as follows: (1) basically, a transition can fire with respect to

the same token shape; (2)when a different token shape is matched, transition firings

www.manaraa.com

55

follow the rules of ordinary Petri nets except that the Greek letter must be checked.

If the Greek letter is matched with the different token shapes, then the transition

can be fired.

Failure rate Resource failure is a common stochastic element of behavior. We

add a useful extension to Petri nets by allowing a failure rate (percentage of time

that a given resource is down) to be assigned to each token. The resource failure rate

FR specified by
Repair time FR = — : : =; ;—:

Operation time + Repair time

is calculated under the assumption that operation and repair time follow the expo­

nential or weibull distribution. When a transition with a non-zero failure rate fires,

a random number is generated with a probability FR of needing repair. This prob­

ability is used to determine which arc should receive a token. If a failure does occur,

then the resource token moves along the failure arc to a place where the resource

failure can be modeled. The resource token is not available until the resource has

been repaired. If the resource fails due to the random variable after the transition

fires in Figure 2, the resource token in place pj is moved to place pr\ and it takes a

repair time R to make the token available in place pj again.

In this paper, we allowed that the model structure can be modified based on

resource and system capability during repair time. For example, if one resource has

problem, then other resources that have the same capability(representing by same

token shape) can takes over its tasks. In this case, one resource can be shared for

two processes and model structure may be changed dynamically corresponding to the

resource and system capability.

www.manaraa.com

56

Products Structure

Types of product A number of products, each having different process plans,

must be considered. Again, token shapes (based on Colored Petri nets) are used to

distinguish the products. Each unique shape has a corresponding process plan, and

each process plan has a procedure associated with different resources.

Process plan In order to complete a process plan, a part uses a number of

resources with different capabilities and potentially competes with the other parts

for the same resources. The process plan for a part can be represented by a unique

subnet. The processing times for each step are incorporated in the transitions as

described earlier.

Priority Manufacturing systems can have a large number of multiple prod­

ucts, with demand varying from high-volume products (that are continuously pro­

duced) to low-volume products (that are produced intermittently). Conflicts arise

when work orders compete for a single resource. Since a single resource cannot pro­

cess these work orders simultaneously, there must be a set of rules to determine the

order in which the work orders are processed. In situations like this, several questions

are raised.

1. Which product should be produced first?

2. Which operation should take place first?

3. How many products should be produced according to the inventory and limited

capacity?

www.manaraa.com

57

In order to answer these questions, transitions and tokens are assigned priorities.

If two or more transitions are enabled by one or more of the same places, we assign

a priority to the transitions on the basis of which transition should fire first [6,10].

This is done by assigning a different priority number(l, 2, ... , n) to each transition,

with 1 being the highest priority and n being the lowest priority. In Figure 3(a),

two transitions (^1,^2) attempt to execute at the same time, but transition fires

because it has a higher priority.

Priorities can also be assigned to token shapes as shown in Figure 3(b). The

circle token has higher priority (priority 1) than the square token(priority 2), so the

circle token always fires first. In addition, a higher priority also can be assigned to

the token that has arrived earlier than the other token to use same resource in the

particular queue of manufacturing systems.

Defective parts After processing, a product is either within specifications or

outside of specifications (defective). We model this behavior as independent Bernoulli

experiments with a probability p of being outside of specifications. A uniform random

number between 0 and 1 is generated when the transition is fired to determine which

edge should receive a token. If a failure does occur, the token (i.e., defective part) can

be directed to a failure arc that leads to a place where rework is performed; or the

token leaves the system. If both the resource and the part fail, then the procedure

for resource failure (as described in Section 2.3.3) is performed simultaneously.

In Figure 4(a), we have two possible outcomes for the assembly process of a robot,

namely, a failure or success, along with their probabilities p and 1 — p, respectively. If

the defective part occurs after firing the transition (which takes process time T), the

www.manaraa.com

58

token is sent either to the place representing rework or it is disposed of, depending

on the quality requirements of the product. With probability 1 — p, the part enters

the next process.

Storage

Buffers and storage areas are used throughout manufacturing systems. The size

or capacity of these areas is an important consideration in the design of such systems.

Capacity-designated Petri nets, as introduced in the literature [20,21], allow for the

representation of limited storage space. For instance, a buffer could be represented

by a capacity-designated Petri net. We use a modified-capacity Petri net, in which

a capacity-designated place has a number representing storage capacity limit and

another number representing inventory. The difference between these numbers is the

space available for tokens. A capacity-designated place is graphically represented by

using a large empty square, with the number inside the square indicating inventory

(i.e., number of tokens) and the number outside the square indicating the storage

capacity limit. Capacity-designated places will prevent input transitions from firing

(i.e., blocking) if the inside number is equal to the outside number. Figure 4(b) shows

a modified-capacity Petri net.

www.manaraa.com

59

MODELING A MANUFACTURING SYSTEM

Product Structure and Resources

Consider a Flexible Manufacturing Cell(FMC) used to produce two different

products {P^ and shown in Figure 5. P^ consists of three parts, let us call them

P^, ^2' ^3 • Three robots (Rl, R2, and R3) and three conveyors (A, B, and C)

are used to perform drilling and assembly tasks for P^. These tasks are performed

at three stations Si, S2, and S3, Conveyor A transfers P^ to station Si for drilling.

Similarly, Conveyors B and C transfer P^ and P^ to stations S2 and S3, respectively.

Once drilling operations are completed, , and Pg are sent to station S2, where

robot R2 performs the final assembly for Pj^, P^ > and Pj.

9 . 9 9 Product P consists of two parts, P^ and P^. Robots R2 and R3 along with

conveyors B and C are used to perform drilling and assembly tasks for P . These

9 9 tasks are performed at stations S2 and S3. Conveyors B and C transfer Pf and P^

to stations S2 and S3, respectively, for drilling and assembly tasks. Once drilling

. 9 9 9 . operations for P| and P^ are completed, P^ is sent to station S2, where robot R2

assembles the part P^ with P^ to get the final product P^. Upon completion of

19 their respective assemblies, both product P and P are sent to a storage area.

The acquisition of a robot occurs when it is idle, and the release of a robot

occurs when the assembly task is completed. We assume that the process times

can be represented deterministically, which is not without precedent for automated

systems [22,23]. Deterministic processing times are assigned to each process and are

represented by transitions.

www.manaraa.com

60

Modeling

Starting with ordinary Petri net constructs, we can formulate the following mod­

els to partially represent the system in Figure 6.

• Single interacting model 1

To carry out the drilling operation for of product , conveyor A and its

left robot R1 are needed. The process occurs in three parts: (distribute

parts for each robot), (acquire its robot), and <2 (drill, release robot, and

send completed part to conveyor B). The circle token in place pj indicates that

robot R1 is available.

• Single interacting model 2

This model uses conveyor C and robot R3 for P^ of product P^ and is similar

to the previous model.

• Single interacting model 3

^2 uses conveyor B and robot R2 that carry out a drilling operation and then

an assembly operation. This process occurs in four parts: Iq (distribute parts

for each robot), <5 (acquire its robot and drill), Iq (assemble with parts from

conveyor A), and tj (assemble with parts from conveyor C, release robot, and

send completed products to storage areas.) The circle token in place pg indi­

cates that robot R2 is available. Figure 6 shows the integrated Petri net model

that combines models 1, 2, and 3.

In order to complete the Petri net model of the flexible manufacturing cell, we

add our extensions previously described in the following manner.

www.manaraa.com

61

• Extension 1

1 0
In Figure 7, two different products {P^ and P), each having different pro­

cess plans, are modeled. Also, two different robots (represented by circle and

square tokens) can be assigned in place pg and pg for different process plans.

In addition, the number of these two robots can be controlled by increasing or

decreasing the tokens in places pj, P5, and pg. The drilling and assembly pro-

19 cesses for P and P are as follows: the circle token passes through transitions

^0' ^1' ^2' ^3' ^4' ^5' ^6' ^7' square token passes through transitions ig,

^3, <5, fg, t j . Note that the square token does not use the input transition

of P2, and the output transition of P4. In this situation, the circle and square

token in place P23 have unique process plans, where their steps are the same

but the times and resources are different.

• Extension 2

We introduce demand from the distribution system as well as stock and ca­

pacity limits. In Figure 7, the place pQ represents the source of demands that

are predicted on the basis of orders from customers. The tokens in place p[3

represent empty fixtures used for each part. The places and pg represent

buffer areas, and the place P23 represents initial capability of the overall as­

sembly system. The number of tokens initially in p|3 bounds the number of

inputs (demands) that the FMC can process at the same time. Each time that

a new input is processed, i.e., whenever fires, a token is removed from P23.

The tokens return to p|3 once the processing is completed, i.e., when fires.

www.manaraa.com

62

• Extension 3

Priority and failure are introduced in the model in the following way. Robots

Rl, R2, and R3 are given failure rates. If two robots fail using exponential

distributions, then the system goes down. However, if only a single robot fails,

then the remaining robots can perform only their tasks and the robot that has

a problem stops its tasks. For example, in Figure 7 if robot Rl has mechanical

problems modeled by the random variable after the firing of transitions t-[or

t2i then the resource token in place moves to place pr and the token delays

a deterministic repair time in transition tr before returning to place p\.

An assigned priority for tokens determines which token can fire first. For in­

stance, if square and circle tokens in P5, pg, pg, and pjQ are available at the

same time, the circle token fires first because the circle token has a higher

priority.

In addition, we changed the Petri net model structure of FMC to show a

conflict case based on the resource capability in pg in the following ways: add

arcs from pg to <][and ^2 to pg instead of input-output arcs of place pj as

shown in Figure 8. Then robot R2 takes over assembly tasks for because

robot R2 has the same capability as robot Rl. In this case, robot R2 must

serve two assembly processes(i^ and <5) and priorities for transitions i] and <5

are assigned. If a conflict arises between these transitions, then the priorities

for and ig are determined by which transition fires first.

www.manaraa.com

63

VALIDATION OF PETRI NET MODEL

After modeling the elements of the system with Petri nets, we consider several

properties of the Petri net model for validation, namely, reachability, liveness, bound-

edness, and conservativeness [6]. This analysis can lead to a better understanding of

the system's behavior. Two main analysis methods - the reachability tree method

and the invariant method [6,7] - can be used to analyze the properties of Petri nets.

Invariant Method

To show the invariant method for a Petri net model [6,11] of the FMC, we con­

sider the conservation problem - showing that tokens are neither created or destroyed.

Stated another way, a weighted sum of the number of tokens in each place at any

instant in time should be constant(i.e., invariant). The weighted sum of tokens may

be viewed as invariants about the behaviour of the FMC and can be determined using

matrix equations. We have two kinds of invariants [11], the p-invariant (associated

with places and represent unchanging sets of conditions of Petri net models) and

the ^-invariant (associated with transitions and represented transitions that leave a

weighted sum of the number of tokens in each place of the Petri net model unchanged

after fired). Therefore, i-invariants will be considered for validating Petri net model

in this paper.

We can also represent a Petri net by using a matrix with rows and columns

representing transitions and places, respectively. Input transitions to place j are

indicated by —1 in the corresponding row and column j. In a similar manner, +1

indicates an output transition. Let us define A (=o^ • "^) as an m x n incident

matrix, where ajj, i = 1, 2, ..., m(transitions), j = 1, 2, ..., n(places) signifies a

www.manaraa.com

64

directed arc, a^- = number of arcs from the transition j to output place i, and a - = ij ij

number of arcs from input place i to transition j. Let W be the n x 1 column vector

of weights for each place in the Petri net model.

The f-invariants can be obtained as the integer solutions to the following equation

(based on the definition in which vectors W are called ^-invariants iff A = 0) [6,11]:

A - i y = 0

The set of linear equations for the FMC corresponding to the matrix equation

are as follows:

-Wi + H/3 -f Wy + = 0

-1^2 -1^3 + 14/4 = 0

- W/4 + H/5 = 0

-M/g -W-j + Wg = 0

- + ^̂ 9 = 0

-VKiO-Wu+Wi2 = 0

^12 + ̂ 13 = 0

1̂ 9 + 1̂ 10-1̂ 13 + 1^14 -f = 0

To find <-invariants that characterize all possible firing behaviors and validate

the Petri net model of FMC, we obtain the set of positive i-invariants that are vectors

(VK^). Since there are 15 unknowns and only 8 equations, there are multiple solutions.

We introduce a simple heuristic method to obtain one solution for because one

www.manaraa.com

65

solution that is a minimum integer is sufficient to get the <-invariants. We begin by

choosing a solution to the first equation. This is done by assigning a value for the

each Wi in the equation such that there is a balance between the number of input

transitions and number of output transitions. For example, in the first equation,

^3' ̂ 7' ^11 represent output transitions (because they have a positive value).

Thus, we assign each of these transitions a value of 1. Then we solve the remaining

transitions (VFj and by assigning a value to each such that the total equation

sums to 0. We arbitrarily assign one a value of 1 and the other a value of 2. The

second step in the heuristic is to substitute the values from the first equation into

the second and choose values for any remaining unknowns in the second equation.

We continue this process until all equations have been solved. The result represents

one possible solution to the set of equations. Using the heuristic, we find a vector W.i

for which the weighted sum over all reachable markings from initial markings of the

Petri net model are constant. These results are useful for validating some important

properties of Petri net models such as conservativeness, boundedness, liveness, and

properness.

Reachability Tree Method

A reachability tree can be used to determine if all states are reachable and

the existence of deadlocks. The reachability tree is a directed graph that shows all

possible sequences of transition firings. Each firing results in a unique marking of

the Petri net. A deadlock is indicated by a marking that has no possible transitions.

The Petri nets model in Figure 7 is validated by using a reachability tree from the

arbitrary initial marking Mq =(1,0,0,3,2,0,0,4,2,0,0,0,5). First, the model must be

www.manaraa.com

66

shown to be deadlock-free by determining if all the transitions can be fired along

with the FMC operations. In Figure 9, a reachability tree that has 12 branches

can be generated from the Petri net model of FMC. Transitions ^3, and ^5 can

be fired at the same time and transitions ^2? ^^nd ^4 can be followed sequentially.

But FMC operations depend upon the firing of transition ^q, ig, tQ, and tj. After

all transitions are fired in any sequence of branches, the marking is returned to the

initial marking Mq. Figure 9 also shows that the sequence for these transitions can

be changed when several transitions are enabled at the same time. Finally, since the

Petri net model is deadlock free, the reachability tree shows that all places have one,

two, or no tokens with all possible sequences except places and pg, which have

a deterministic number of tokens representing storage capacity. This indicates that

the Petri nets model is bounded.

From these results, the formal properties of the Petri nets model (boundedness,

conservativeness, liveness, and deadlock free) can be easily analyzed and validated.

www.manaraa.com

67

PERFORMANCE ANALYSIS

A simple Petri net model of the logical and causal dependencies in a manufac­

turing system is not a sufficient tool to analyze system characteristics such as time,

resource availability, capacity constraints, and demand.

Two types of constraints affect the performance of a manufacturing system.

The first type is the internal structure that defines how the processes work in the

system. Most manufacturing systems have both sequential and concurrent processing

activities. The second type of constraint is magnitude of time, resources, capacity,

priority, and demand. The system has a limited amount of productive time because

of the constrained resources. In addition, resource availability and capacity limits

are used to represent the productive capacity of the system. Priority is used to

resolve conflict situations that arise when work orders compete for a single resource.

Customer demand will be given in place Pq in our model.

Maximum Production Rate of the System

If demand is low, the manufacturing system will satisfy it. In this case, the

rate at which products are being processed will precisely correspond to the demand

rate. However, beyond a certain demand rate, products will compete for resources,

creating a backlog of work. This bound determines the maximum production rate of

the system and is a function of time, resources, capacity, and priority.

The Production Schedule

The production schedule specifies the time at which work orders are released

into the system. This type of schedule represents a push production system. Assume

www.manaraa.com

68

that the processing starts at time < = 0 and that a large demand forces processing

to occur at the maximum production rate. In this section, we want to determine the

schedule for the various processes (represented by transitions) for various demand

rates. From the flow time (the time interval between the moment the demand was

received and the moment a product was made), we can determine the tardiness of

the work order.

By changing the control variables in the model (e.g., resources and time) and

executing the Petri net model of FMC, we can determine execution schedules for each

process and a production schedule for scheduling purposes. Therefore, the production

schedule of the FMC will be changed on the basis of process schedules for each process

and the characteristic dynamic behaviors of the FMC. Starting from the initial

stage, the process can be continued repetitively until demand is satisfied. Thus,

the best performance of the manufacturing system will be obtained with respect to

system characteristics such as time, resource availability, capacity, and demand.

Numerical Results

Using our extended Petri net models, we have implemented a deterministic and

stochastic algorithm to analyze the FMC system in Figures 6, 7, and 8. We create an

input file (including transitions, places, input-output relations of transitions, tokens

in each place, process time for each transition, capacity of storage place, priority,

and failure rate) in order to model and analyze the assembly system. By changing

different variables, we create output files with the following results:

www.manaraa.com

69

• The maximum production rate of the FMC [17]

From the incident matrix, we can determine all the circuits (possible flows of

tokens), the maximum circuit time (longest circuit flow time), the throughput

of the Petri net model [24].

• Availability(percentage of idle time) of resources in the FMC

From the state variable (A) defined as follows:

A =
0 if resource is not available

1 if resource is available

we know the availability and utilization for resources in place pj, pg, and pg of

the Petri net model using state variables.

• Processes and production schedules

Schedules for the various processes (represented by transitions) and production

schedules for various demand rates can be evaluated.

• Statistical analysis

Confidence intervals for maximum production rates are based on resource failure

rates and deterministic repair times.

We investigated six cases in which we perturbed the FMC system to identify ar­

eas for improvement. The perturbations included processing time for each transition

(case 1), resource availability (case 2), number of resources (case 3), storage capacity

(case 4), priority and failure rate (case 5), and sensitivity analysis (case 6) as follows:

www.manaraa.com

70

• Case 1

We initially assume deterministic time (<q = 3 units, = 2 units, ^2 = ^ units,

^3 = 4 units, ^4 = 5 units, = 3 units, Iq = b units, and t'j = 5 units) and

vary these times to increase the maximum production rate.

On the basis of the incidence matrix, six circuits (six possible flows of tokens)

are found in the Petri net model [16,17]. Table la shows six circuits, with the longest

one being the critical circuit that determines the maximum flowtime of the assembly

system [16]. The critical circuit of this Petri net model is associated with processes

between conveyor A (transitions ^q, ^2) conveyor B (transitions ig,).

However, in general, the maximum production rate is governed by the bottleneck. Be­

cause of the configuration of the FMC, the maximum production rate (= l/minimuni

flowtime) is used as a measure of system performance.

To increase the maximum production rate, we must reduce the processing time

for transitions on the critical circuit. For example, if the process time for transition

^0 is reduced from five to four, then there are two critical circuits (Table lb), which

in turn increases the maximum production rate. In addition, if process time for

transition tj is reduced from five to three, then there are two critical circuits (Table

Ic), but the maximum production rate is increased.

• Case 2

The processing times are fixed and the number of moving fixtures in place

pj3 are varied to determine the number of fixtures that maximize resource

utilization.

www.manaraa.com

71

Table 2a shows dynamic changes of the resource availability in the Petri nets

model. Robot R1 is not working from time 8 to 18 although it is available. To

increcise robot utilization, we need to increase the number of fixtures in place P23. The

maximum production rate will also be increased. Table 2b shows dynamic changes

of the resource utility in the Petri nets model with two moving fixtures in place

• Case 3

In this case, the processing time (same as used in Case 2), and number of moving

fixtures(2) are fixed, but the number of robots Rl, R2, and R3 is varied. Table

3(a) shows that case 3(e) and case 3(g) have the largest maximum production

rate.

• Case 4

With fixed deterministic processing time and a number of moving fixtures (same

as used in Case 2), and a fixed number of robots Rl(= 1), R2(= 2), R3(= 2),

but stock in place P4, pg varied by five. In this case, the maximum production

rate is not changed, but the production schedule will change on the basis of the

stock.

• Case 5

A failure rate (0.0125, 0.025, 0.0375, and 0.05) and a deterministic repair

time(100 unit times) has been given to robot Rl on the basis of the exponential

distribution with A = 0.0025 and /x = 0.1975, A = 0.005 and /i = 0.195, A =

0.0075 and ^ = 0.1925, and A = 0.01 and fi = 0.19 per 1000 hours, respectively.

If Rl fails, then the remaining robots continue to perform their tasks.

www.manaraa.com

72

The confidence interval for the maximum production rate that can be ob­

tained by using the stochastic algorithm was run 10,000 times on the basis of

case 4 and different failure rates. Table 3(b) shows a confidence interval of 95

% for the maximum production rate for different failure rates.

If two robots fail, the system goes down. If only a single robot fails, then the

remaining robots may be used to perform the failed robot's tasks (see extension

3 in Section 3.2). For example, in Figure 8 robot R1 has failed from a generated

random variable, so robot R2 will perform Rl's tasks. Transitions and

have become enabled to fire simultaneously. However, transition t\ has a higher

priority so it fires first. In this case, the maximum production rate is 0.22 based

on deterministic time (case 2), number of moving fixtures (= 2), and number

of robots Rl(= 1), R2(= 2), R3(= 2) are fixed.

• Case 6

We assume process time, number of moving fixtures, and number of robots can

vary from configurations of the FMC as follows.

1. process time : = 2-3 units, = 2 units, ^2 =2-3 units, <3 =3-4 units,

<4 =4-5 units, <5 =2-3 units, <g = 4-5 units, and <7 =4-5 units.

2. number of moving fixtures are varied by ten.

3. number of robots Rl, R2, and R3 are varied by two.

Using the deterministic algorithm, we simulate an analysis according to the

process time, the number of moving fixtures, and the number of robots (which

are varied). Finally, we suggest the greatest maximum production rate that

www.manaraa.com

73

occurs given the process time, number of moving fixtures, and number of robots.

www.manaraa.com

74

CONCLUSION

We have shown how ordinary Petri nets can be extended to model time, resource

availability, multiple products, different processes, capacity, priority, and failure rate.

These extensions allow a wide variety of manufacturing systems to be modeled. Val­

idation methods in the context of these extensions can identify potential problems in

system operations. Several examples have shown how the Petri net models with some

extensions can be effective in modeling and analyzing manufacturing systems. The

results of the performance analysis from a deterministic or stochastic model are used

to reorganize and re-evaluate manufacturing systems so they may respond flexibly.

www.manaraa.com

75

BIBLIOGRAPHY

Cohen, H.L., 1988, Strategic Analysis of Integrated Production-Distribution Sys­
tems: Models and Methods. Operations Research, 36(2), 216-228.

Nevins, J.L., and Whitney, D.E., 1989, Concurrent Design of Products and
Processes(McGraw-Hill, New York.).

Hanssmann, F., 1959, Optimal Inventory Location and Control in Production
and Distribution Networks. Operations Research, 7, 187-193.

Malone, T.W., and Smith, S.A., 1987, Modeling the Performance of Organization
Structures. Operations Research, 36(3), 198-206.

Al-Jaar, R.Y., and Desrochers, A.A., 1989, Petri Nets in Automation and Man­
ufacturing. in Advances in Automation and Robotics, Vol 2, (JAI Press, Green­
wich, Conn.).

Peterson, J.L., 1981, Petri Net Theory and the Modeling of Systems (Prentice-
Hall, Englewood Cliffs,N.J.).

Jensen, K., 1981, Colored Petri Nets and the Invariants-Method. Theoretical
Computer Science, 14, 317-336.

Jensen, K., 1981, High-Level Petri Nets Applications and Theory of Petri Nets.
Informatica-Fachberichte 66 (Springer-Verlag, Hamburg) 166-180.

Viswanadham, and Narahari, Y., 1987, Coloured Petri Net Models for Auto­
mated Manufacturing Systems. Proceedings of the IEEE International Confer­
ence on Robots and Automation, Raleigh, N.C., 1985-1990.

Murata, T., 1987, Petri Nets : Properties Analysis and Applications. Proceedings
of the IEEE, 77(4), 541-580.

Memmi, G., and Roucairol, G., 1979, Linear Algebra in Net Theory. Net The­
ory and Applications (Lecture Notes in Computer Science), 84 (Springer-Verlag,
Hamburg, Germany) 213-223.

Genrich, H.J., and Lautenbach, K., 1981, System Modeling with High-Level
Petri Nets. Theoretical Computer Science, 13, 109-136.

Chretienne, P., and Carlier, J., 1984, Modeling Scheduling Problems with Timed
Petri Nets. Advances in Petri nets (Lecture Notes in Computer Science), 188
(Springer-Verlag, Berlin, Germany) 62-82.

www.manaraa.com

76

[14] Magott, J., 1987-88, Performance Evaluation of Concurrent Systems using
Conflict-Free and Persistent Petri Nets. Information Processing Letters^ 26, 77-
80.

[15] Choi, B.W., and Kuo, W., 1988, Performance Analysis of a Generic Naval C2
Battle Group System by Use of Timed Petri Nets. Proceedings of the Winter
Simulation Conference, 765-774.

[16] HilHon, H.P., 1983, Performance Evaluation of Decision Marking Organization
using Timed Petri Nets. M.S. thesis, (M.I.T., Cambridge, Mciss.).

[17] Ramchandani, C., 1974, Analysis of Asynchronous Concurrent Systems by
Timed Petri Nets. Technical Report No. 120, Laboratory for Computer Science,
(M.I.T., Cambridge, Mass.).

[18] Sifakis, J., 1978, Performance Evaluation of Systems using Nets. Net Theory
and Applications (Lecture Notes in Computer Science), (Springer-Verlag, Berlin,
Germany) 307-319.

[19] Arbel, A., and Seidmann, A., 1984, Performance Evaluation of Flexible Manu­
facturing Systems. IEEE Transactions on Systems, Man, and Cybernetics, 1(5),
606-617.

[20] Andre, C., Armand, P., and Boeri, F., 1979, Synchronic Relations and Applica­
tions in Parallel Computation. Digital Processes, 5, 99-113.

[21] Murata, T., and Komoda, N., 1987, Liveness Analysis of Sequence Control Speci­
fications Described in Capacity-Designated Petri Nets using Reduction. Proceed­
ing of the IEEE International Conference on Robotics and Automation, Raleigh,
N.C., 1985-1990.

[22] Liu, C., 1988, Stochastic Design Optimization of Asynchronous Flexible Assem­
bly System. Annals of Operations Research, 11, 131-154.

[23] Bulgak, A,A., 1992, Impact of Quality Improvement on Optimal Buffer Designs
and Productivity in Automatic Assembly Systems. Journal of Manufacturing
Systems, 11(2), 129-143.

[24] Alaiwan, H., and Toudic, J.M., 1985, Recherche des Semi-Flots, des verrous et
des Trappes dan les Reseaux de Petri. Technique et Science Informatiques, 4(1),
Dunod, France, 103-112.

www.manaraa.com

77

(a)

CYCLE CIRCUIT TIME (UNITS) TRANSITION • PLACE SEQUENCES

1 16.0 TO PIO T5 Pll T6 P12 T7 P13

2 17.0 TO P6 T3 P7 T4 P8 T7 P13

3 18.0 TO P2 T1 P3 T2 P4 T6 P12 T7 P13

4 5.0 T1 P3 T2 PI

5 9.0 T3 P7 T4 P5

6 13.0 T5 Pll T6 P12 T7 P9

(b)

CYCLE CIRCUIT TIME (UNITS) TRANSITION - PLACE SEQUENCES

1 15.0 TO PIO T5 Pll T6 P12 T7 P13

2 17.0 TO P6 T3 P7 T4 P8 T7 P13

3 17.0 TO P2 T1 P3 T2 P4 T6 P12 T7 P13

4 5.0 T1 P3 T2 PI

5 9.0 T3 P7 T4 P5

6 12.0 T5 Pll T6 P12 T7 P9

_(C)

CYCLE CIRCUrr TIME (UNITS) TRANSFFION - PLACE SEQUENCES

1 13.0 TO PIO T5 P l l T6 P12 T7 P13

2 15.0 TO P6 T3 P7 T4 P8 T7 P I3

3 15.0 TO P2 T1 P3 T2 P4 T6 P12 T7 P13

4 5.0 T1 P3 T2 PI

5 9.0 T3 P7 T4 P5

6 10.0 T5 P l l T6 P12 T7 P9

Table 1: Critical circuit and maximum production time of the FMC.

www.manaraa.com

78

(a)

TIME PO PI P2 P3 P4 P5 P6 P7 P8 P9 PIO P l l P12 PI 3 P14

0.0 10 1 0 0 0 1 0 0 0 1 0 0 0 1 0

3.0 9 1 1 0 0 1 1 0 0 1 1 0 0 0 0

6.0 9 0 0 1 0 1 1 0 0 0 0 1 0 0 0

8.0 9 1 0 0 1 0 0 1 0 0 0 1 0 0 0

12.0 9 1 0 0 0 1 0 0 1 0 0 0 1 0 0

15.0 9 1 0 0 0 1 0 0 0 1 0 0 0 1 1

18.0 8 1 1 0 0 1 1 0 0 1 1 0 0 I I

(b)

TIME PO PI P2 P3 P4 P5 P6 P7 P8 P9 PIO P l l PI 2 P13 P14

0.0 10 1 0 0 0 1 0 0 0 1 0 0 0 2 0

3.0 9 1 1 0 0 1 1 0 0 1 1 0 0 1 0

6.0 8 0 1 1 0 1 1 0 0 0 1 1 0 0 0

8.0 8 1 1 0 1 0 1 1 0 0 1 1 0 0 0

12.0 8 0 0 1 0 1 1 1 1 0 1 0 1 0 0

15.0 8 1 0 0 1 0 0 1 0 1 1 0 0 1 1

. 18.0 7 1 1 0 1 0 1 0 0 0 1 0 0 I 1

Table 2: Dynamic changes of the Petri net model.

www.manaraa.com

79

ROBOT A ROBOT B ROBOT C MAXIMUM PRODUCTION RATE

CASE 3(a) 2 1 1 0.1

CASE 3(b) 1 2 1 O.I

CASE 3(c) 1 1 2 0.11

CASE 3(d) 2 1 2 0.11

CASE 3(e) 1 2 2 0.2

CASE 3(0 2 2 1 O.I

CASE 3(g) 2 2 2 0.2

(a) Maximum production rate from deterministic algorithm

FAILURE RATE CONFIDENCE INTERVAL FOR THE MAXIMUM PRODUCTION RATE

0.0125 0.195 - 0.205

0.025 0.193 - 0.207

0.0375 0.19 - 0.21

0.025 0.189 - 0.211

(b) Maximum production rate from stochastic algorithm

Table 3: Maximum production rate

www.manaraa.com

80

ROBOT IS EJLE

©• o
ROBOT IS BUS'

CONVEYOR IS AVAILABLE

(a) Petri net example

ROBOT IS IDLE

PROCESS TIME A

CONVEYOR IS AVAILABLE TRANSITION tl

(b) Timed Petri net example

Figure 1: Ordinary and Timed Petri net example

www.manaraa.com

81

J
PI R

o o
P3

—r """"" 0

P3

2: Modified Petri net example with failure rate

www.manaraa.com

82

#1

Before firing

12
After firing

(a) Transition with priority

N#2

••0- o © •0

Before firing After firing

(b) Token with priority

Figure 3: Modified Petri net examples with priority

www.manaraa.com

83

O • $

(a) Failure rate for the defective part

(b) Modified Petri net example with storage

4: Modified Petri net examples with product

www.manaraa.com

84

C^^^BOT

STATION SI

STATION S2

CONVEYOR A

CONVEYOR C

OUTPUT INPUT CONVEYOR B

STATION S3

Figure 5: Flexible manufacturing cell

www.manaraa.com

85

Ol-O^hO/

P13

-G-

Figure 6: Petri net model of the FMC

www.manaraa.com

86

PRODUCT PI •
PRODUCT P2

PIO P12 Pll T6 T7 £1A.

Figure 7: Extended Petri net model of the FMC

www.manaraa.com

Product A •

Product B •

Figure 8: Extended Petri net model of the FMC with failure rate and priority

www.manaraa.com

88

Figure 9: Reachability tree

www.manaraa.com

89

PAPER III.

A PETRI NET APPROACH TO MODELING, ANALYZING, AND

EVALUATING AN AUTOMATED PALLETIZED CONVEYOR

SYSTEM

www.manaraa.com

90

ABSTRACT

In this paper, we present an approach to modeling, analyzing and evaluating an

Automated Palletized Conveyor System (APCS) using extended Petri net models.

We first examine the APCS and extend the fundamental constructs of Petri net

models. We then build a Petri net model of the given APCS, analyze important

qualitative aspects of APCS behaviors and finally evaluate performances of APCS.

A modified deterministic and stochastic algorithm is developed to describe and

evaluate the Petri net model of the given APCS. The input and control mechanisms

of the Petri net model are varied, implemented, and evaluated to produce results that

can be used to redesign the APCS and also can be directly applied to the design and

analysis of the full-scale material handling operation.

www.manaraa.com

91

INTRODUCTION

Material handling facilities are considered to be the key factor in nnodern man­

ufacturing systems because they are widely used to transport and store material

between production stages. Although many aspects of the material handling facili­

ties have been considered as subjects of research, we still require methodologies and

control mechanisms to experiment with the material handling facility in a readily

controlled environment.

The APCS consists of two conveyors, pallets, three different parts, one robot

for part placement, several pneumatic actuators, several sensors, sixteen cylinders,

two conveyor circuits with four motors and one programmable logic controller. This

system provides a real-time physical model for a modern integrated manufacturing

facility.

More specifically, the APCS is a double closed loop system (feed loop and ma­

chining loop) controlled by a Programmable Logic Controller(PLC), programmed

using relay ladder logic. The belts of the double conveyor move continuously at a

constant speed. The feed loop shows how to control assembly materials represented

by different shapes, and the machining loop controls the number of pallets and rep­

resents the machining processes. With the use of photoelectric sensors, features such

as sorting, accumulation of dissimilar parts, and automated transfer between con­

veyor circuits provide simple solutions for material handling problems. By using this

system, we can have several useful experimental situations to analyze and design a

material handling system.

However, most PLC's that control the APCS, are based on Boolean languages

or relay ladder logic. These are complex control diagrams that have not been used

www.manaraa.com

92

or defined in order to describe high level specification concepts. Also, the A PCS has

several changeable variables and components such as conveyor speed, sensor, different

parts, number of parts, number of pallets and cylinder positions. Therefore, we need

to exploit a high level specification mechanism to represent changeable variables and

components of the APCS, and to implement operational functions of the APCS from

the system flow to the individual equipment.

The Petri nets are useful specification tools for modeling, analyzing and evaluat­

ing discrete event logic of material handling systems, specifically for the given APCS,

because concurrency or parallelism, asynchronous processes, deadlock, conflict, and

event driven processes can all be considered.

Theories and applications of the Petri nets have been studied by Jensen [9-11],

Peterson [19], Viswandahham and Narahari [17,22], Grenrich and Lautenbach [6],

Murata [15-16], Choi and Kuo [4]. More specifically, theories and applications of the

Petri net model for manufacturing systems with robots have been studied by Crockett,

Desrochers, DiCesare, and Ward [5], Paul [18], Weixiong [23], and Martinez, Muro,

and Silva [13]. However, these studies provided partial representations of the given

APCS, leaving out such characteristics as resource availability, type of processes,

multiple products, capacity, priority, and failure rate.

A distinctive advantage of Petri nets is the ability to analyze the model. This

analyzing process includes both determining if the model performs correctly (e.g., no

deadlocks or boundedness) as well as determining if the Petri net accurately models

the actual system. A number of methods have been proposed for the analysis of

the Petri net models. For instance, Peterson [19] introduced the reachability tree

and matrix equation methods; Jensen [10] describes the invariant-method; Memmi

www.manaraa.com

93

[14] introduces the algebrac meaning of the invariants; Narahari [17] also reviews the

important concept of Petri net invariants and describes a knowledge of the invariants

of a Petri net model in the Flexible Manufacturing System context.

Performance analysis of manufacturing systems provides a means of determining

system characteristics. Performance analysis of Petri net models has been studied

by Magott [12], Choi and Kuo [4], Hillion [7], Ramchandani [20], Sifakis [21], and

Arbel and Seidmann [2]. These studies show how measures such as the maximum

computation rate and dynamic response time can be determined.

Using previous studies as a starting point, we first examine the APCS and extend

the fundamental constructs of Petri net models by adding elements for time, resource

availability (number of resources, type of resources), types of processes, multiple

products (with and without priority), capacity (buffer size or storage capacity limit),

and failure rate (part defect or equipment breakdown). We then build a Petri net

model of the given APCS, analyze important qualitative aspects of APCS behaviors

and finally evaluate performances of APCS.

A modefied deterministic stochastic algorithm is developed to describe and eval­

uate the Petri net model of the given APCS. The approach is based on the Petri

net graph structure, firing rules, the state of the Petri nets model, and extended

properties.

Using this algorithm the input and control mechanisms of the Petri net model

are varied, implemented, and evaluated to produce results of performance analysis.

Finally, these results can be used to redesign the APCS and directly applied to the

design and analysis of the full-scale material handling operation.

www.manaraa.com

94

AN AUTOMATED PALLETIZED CONVEYOR SYSTEM

Figure 1 shows an APCS that includes pallets, three different parts, one photo-

eye, six sensors, sixteen cylinders, and two conveyor circuits with four motors. With

the use of photoelectric sensors, features such as sorting, accumulation of dissimilar

parts, and automated transfer between conveyor circuits provide simple solutions to

material handling problems. The APCS has several areas grouped according to their

material handling operations as follows:

• Accumulation area: Three different holding lanes maintain separation of

dissimilar parts according to their shapes and colors on a feed line to varied

machining operations. The outside lane, middle lane, and inside lane hold

black large size parts, silver large size parts, and small size (square and round)

respectively. It allows a selected quantity of parts to be released from each lane

sequentially, starting with the outside lane. The outside lane uses two cylinders

(3 and 13) to release a selected quantity of black large size parts, the middle

lane uses two cylinders (4 and 14) to release a selected quantity of silver large

size parts, and finally the inside lane uses two cylinders (5 and 15) to release a

selected quantity of two small size parts.

• Staging area: Sensor 4 at this collection area controls and maintains the

proper number of parts released from the accumulation area. If the sensor 4

detects a delay in part movement in a certain amount of time, then parts cannot

be released during that time from the accumulation area. At this metering area,

the parts (detected by sensors 5 and 6) that have different vertical height are

simultaneously accepted, otherwise rejected according to size (detected by only

www.manaraa.com

95

sensor 5). All parts including correct parts are held for release by cylinder (6

and 16) to the pickup and return area, and black large size parts and small size

parts are allowed to pass through for recycling by cylinder 7.

• Part pick-up and return area: A silver large part in the metered release

position activates a stop to retain the part for transfer to the machining loop

via a pick and place device. Machined parts are transferred back to the outside

lane of the feed line. These parts are released when the inside lane is clear.

The pick and place device uses cylinder (8, 9, and 10) to move vertically or

horizontically and start to move to the pallet load/unload area when a pallet

arrives to the rocker type device.

• Pallet accumulation/metering area: A rocker type device on the machining

loop holds pallets one at a time in the pallet load/unload area as called for by

the photoeye and releases pallets when a pallet is loaded by the pick and place

device.

• Pallet load/unload area: Sensor 7 detects loaded or empty pallets with

priority on unloading. This eliminates the possibility of placing another part

on a loaded pallet.

• Part seperation area: Separation is accomplished with the use of two sensors

(1 and 2). The first sensor detects color, and the second sensor measures size.

The black large size parts, silver large size parts, and small size (square and

round) are separated to the outside lane, middle lane, and inside lane respec­

tively. The separated parts are then held in accumulation lanes.

www.manaraa.com

96

Cylinder #1

Sensor #2 \ Qjte

Cylinder #3-

Cylinder #4

•Cylinder #13

Cylinder #14

Gate #2

Sensor #1 Cylinder #2
Cylinder #5 Cylinder #15

Motor #2

Cylinder^ 11 r^^hotoeyc

Sensor #7

Cylinder #12

Sensor #4

Cylinder #7 Cylinder #8,9.10 \ \ Cylinder #16

Sensor #5 and #6

^ Cylinder #6

Figure 1: Automated Palletized Conveyor System

www.manaraa.com

97

MODELING METHODOLOGY

Ordinary Petri nets

• Petri Net (=PN)

A Petri net is a four-tuple, PN= (P,T,I,0), where P= { pj, P2, ..., pn, } is

a set of places, T= { fj, ^2) • • • > ^n> } is a set of transitions. The set of places

and the set of transitions are disjoint, PnT = 0. IC{P*T} and O C { T

* P } are sets of directed arcs.

A place Pi is an input place of a transition tj if G K^j)'i Pi's an output place

if Pj G 0{tj). Similarly, the multiplicity of an input place and output place

PI for a transition tj is defined as # (p̂ , and # (pj, 0{tj)).

• Marked Petri Net (=M)

A Petri net M containing a marking /i is a marked Petri net M= (P,T,I,0,/^

). Marking /x of a Petri net PN is a function from set P to a set of nonnegative

integers N, P —> N, Where fi sets tokens to every place, /i(pj £ N

indicates the number of tokens in place Pj). We denote a Marked Petri net

(=M) by (PN, /x). We generally associated an initial marking [xq with a given

M

Tokens reside at a place when it is active. Tokens flow through the net depend­

ing on the present marking of the net. The marking of a Petri net is contained

in a vector of dimension n, where n is the number of places and each value of

the vector corresponds to the number of tokens in the corresponding place.

www.manaraa.com

98

• Petri Net Graph

A Petri net graph uses circles to represent places (states) and bars to represent

transitions (events). Input-output relationships are represented by directed arcs

between places and transitions. A marking is represented by tokens in places

of the Petri net.

• State (=S) of the Petri net

Marking /z=(/xj, fi2, • • f-n)is also called the state of a Petri net. Let state

S be

S=(5^, 52, ••., Sn)i

where

Si =
1, if H

0, if fii=fi{Pi) =

The state S shows whether a place has tokens or not.

• Incident Matrix and Firing Rules

Let INS be the (m,n) —* { 0,1, ..., i } function that defines the multiplicity of

an input place of the transition. And let OUTS be the (m,n) —> { 0,1, ..., o }

function that defines the multiplicity of an output place of the transition. If the

M has no self-loops, then the m x n incident matrix D defined by D= OUTS-

INS characterizes the relationship between places and transitions. Therefore,

functions of INS and OUTS of Petri net M are represented by two matrices

D~ and Each matrix has m rows for each place and n columns for each

www.manaraa.com

99

transition. The incident matrix D is defined by D= D'^ [j, z] (= # {Pi, i(tj))

• = * (Pi,

Now a transition tj is enabled in a marking n if

H > e \ }] X D ~ ,

where ep] is the unit m-vector which is zero everywhere except in the jth com­

ponent.

The result of firing transition tj in marking /i, if it is enabled, is

H - e[j] X D ~ + e[j] x D+,

=/i -I- e[j] X { - D ~ + £) +) ,

=pL + e[i] X D.

Figure 2(a) shows a Petri net example for accessing a robot. The tokens, places,

and transitions correspond to the various elements found in manufacturing systems.

Places usually represent resources (e.g., machine, part, and data). A token in a place

indicates that the resource is available; otherwise it is unavailable. A place can also

be used to imply that a logical condition holds. Transitions are generally used to

represent the initiation or termination of an event.

Process Time

With a set of simple constructs, Petri nets can model a wide variety of discrete

event dynamic systems. However, ordinary Petri nets do not account for the passage

of time. In most systems, timing is a critical factor for evaluating performance and

www.manaraa.com

100

validating control logic. For manufacturing systems, this is especially true because

time is an essential element in functions such as production scheduling and control.

Ramchandani[20] and Sifakis[21] introduced the notion of a Timed Petri net

(TPN). Ramchandani described a TPN cis a pair (PN,?;), where PN is a Petri net

and 7/ is a processing time function that assigns a positive rational number to each

transition of the net. In a TPN model, each transition after being enabled)has

a time delay of before firing. The firing times must be rational so that we can

discretize the processing times in units of time and precisely describe the state of

the process at each instant of time. The rule of operation of a TPN is similar to

an ordinary PN. Once a transition is enabled, the token are removed from the input

places and are held for time after which the tokens are sent to all the output

places. Transitions in TPNs can be viewed as a list of events where multiple sets of

tokens can be at different stages of the time delay. The execution of the model would

be controlled through the use of a global clock to time events.

A transition associated with time is graphically represented using a bar

[], which indicates that a token stays in that transition for a processing time 7/(ij).

Figure 2(b) shows a timed Petri net example using a robot. Transition has an

associated delay time of A. When the conveyor and the robot are both available (i.e.,

a token is present in each place), the processing time for transition begins. The

time delay A represents the material handling time for the conveyor to move a part

to the robot.

www.manaraa.com

101

• J ROBOT IS IDLE

0- O
CONVEYOR IS AVAILABLE

(a) Petri net example

ROBOT IS BUS-

ROBOT IS IDLE

PROCESS TIME A

CONVEYOR IS AVAILABLE TRANSITION ll

(b) Timed Petri net example

Figure 2: Ordinary and Timed Petri net example

www.manaraa.com

102

Resources

• Capacity

In manufacturing systems, one finds a number of limited resources such as

machines

and robots that, have the same process structure and behavior. Each resource

has a fixed number of tokens representing the total capacity. The number of

resource tokens in a place indicates the state of those resources (i.e., idle, down,

or busy).

• Capability

Resources are differentiated by their set of capabilities to perform required

functions. For example, a milling machine can be used to perform a family

of metal removal processes. A Petri net extension that is useful for modeling

different types of resources is called Colored Petri nets[7-8,12]. Using a similar

approach, we represent token color as a token shape, indicating the identity of

a resource. A place can have one or more token shapes that represent a set of

different resources. These sets can be

used to model a system with n different resources that provide different capa­

bilities. A transition can fire with respect to each of these shapes. Transition

firing follows rules of ordinary Petri nets except that token shapes must match.

In other manufacturing environments, there is a many-to-many mapping be­

tween product type and resource. This mapping is a direct results of capability

requirements of products and available capabilities of resources. If different

products (representing different token shapes) require one resource, then the

www.manaraa.com

103

transition cannot fire because the token shape is not matched. We then assign

letters to the tokens (a, 6, c, ..., x, y, z representing different capabilities). In

this case, the transition firing rule will be changed as follows: (1) basically, a

transition can fire with respect to the same token; (2)when a different token

shape is matched, transition firings follow the rules of ordinary Petri nets ex­

cept that the letter must be checked. If the letter is matched with the different

token shapes, then the transition can be fired.

• Failure Rate

Resource failure is a common stochastic element of behavior. We add a useful

extension to Petri nets by allowing a failure rate (percentage of time that a

given resource is down) to be assigned to each token. The resource failure rate

FR specified by
Repair time

Operation time + Repair time

is calculated under the assumption that operation and repair time follow the

exponential or weibull distribution. When a transition with a non-zero failure

rate fires, a random number is generated with a probability FR of needing

repair. This probability is used to determine which arc should receive a token.

If failure does occur, then the resource token moves along the failure arc to

a place where the resource failure can be modeled. The resource token is not

available until the resource has been repaired. If the resource fails due to the

random variable after the transition fires in Figure 3, the resource token in

place Pi is moved to place p/-; then it takes a repair time R to make the token

available in place pj again.

www.manaraa.com

104

Products Structure

• Types of product

In manufacturing systems, a number of products, each having different process

plans, must be considered. Again, token shapes (based on Colored Petri nets)

are used to distinguish the products. Each unique shape has a corresponding

process plan, and each process plan hcis a procedure associated with different

resources. When a token arrives at all of the input places of the transition, the

procedure is executed.

• Process plan

To complete a process plan, a part uses a number of resources with different

capabilities and potentially competes with other parts for the same resources.

The process plan for a part can be represented by a unique sub-net. The

processing times for each step are incorporated into the transitions as described

earlier.

P3 P2 P3

Figure 3: Modified Petri net examples with failure rate

• Priority

Most manufacturing systems can have a large number of multiple products,

www.manaraa.com

105

with demand varying from high volume products (that are continuously pro­

duced) to low volume products (that are produced intermittently). Conflict

arises when work orders compete for a single resource. Since a single resource

cannot process these work orders simulationously, there must be a set of rules

to determine the order in which the work orders are processed. In situations

like this, several questions are raised.

1. Which product should be produced first?

2. Which operation should take place first?

3. How many products should be produced according to the inventory and

limited capacity?

In order to answer these questions, transitions and tokens are assigned priorities.

If two or more transitions are enabled by one or more of the same places, we

assign a priority to the transitions on the basis of which transition should fire

first [16, 19]. This is done by assigning a different priority number (1,2, ...,

n) to each transition, with 1 being the highest priority and n being the lowest

priority. In Figure 4(a), two transitions (ij, ̂ 2) attempt to execute at the same

time, but transition fires because it has a higher priority.

Priorities can also be assigned to token shapes as shown in Figure 4(b). The

circle token hcis higher priority (priority 1) than the square token (priority 2), so

the circle token always fires first. In addition, a higher priority can be assigned

to a token that has arrived earlier than another token requiring use of the same

resource in a particular queue of the manufacturing systems.

www.manaraa.com

106

©-
#1

G>
#2 o
t2

Before iliing

© o

After finng

(a) Transition with priority

"0- o ® •0

Before firing After firing

(b) Token with priority

Figure 4: Modified Petri nets example with priority

www.manaraa.com

107

• Defective parts

After processing, a product is either within specifications or outside of specifica­

tions (defective). We model this behavior as independent Bernoulli experiments

with a probability p of being outside of specifications, a uniform random num­

ber between 0 and 1 is generated when the transition is fired to determine which

edge should receive a token. If a failure does occur, the token (i.e., defective

part) can be directed to a failure arc that leads to a place where rework is

performed; otherwise, the token leaves the system. If both the resource and the

part fail, then the procedure for resource failure (as described in Section 3.3) is

performed simultaneously.

In Figure 5(a), we have two possible outcomes for the assembly process of a

robot, namely a failure or success, along with their probabilities F (=p) and F-1

(1-p), respectively. If the defective part occurs after firing the transition (which

takes process time T), the token is sent either to the place representing rework

or it is disposed of, depending on the quality requirements of the product. With

probability 1-p, the part enters the next process.

Storage

Buffers and storage areas are used throughout manufacturing systems. The size

or capacity of these areas is an important consideration in the design of such systems.

Capacity-designated Petri nets, as introduced in the literature [1, 16], allow for the

representation of limited storage space. For instance, a buffer could be represented

by a capacity-designated Petri net. We use a modified-capacity Petri net in which

a capacity-designated place has a number representing storage capacity limit and

www.manaraa.com

108

another number representing inventory. The difference between these numbers is the

space available for tokens. A capacity-designated place is graphically represented by

using a large empty square, with the number inside the square indicating inventory

(i.e., number of tokens) and the number outside the square indicating the storage

capacity limit. Capacity-designated places will prevent input transitions from firing

(i.e., blocking) if the inside number is equal to the outside number. Figure 5(a) shows

a modified-capacity Petri net.

(a) Failure rate for the defective pan

(b) Modified Petri net example with storage

Figure 5: Modified Petri net examples with product

www.manaraa.com

109

MODELING THE APCS

A Proposed Petri Net Model

We now present our approach to the modeling of the given APCS using extended

Petri nets. Petri nets are developed to model discrete event systems with several

tuples requiring interaction with each other. They are useful modeling tools because

concurrency or parallelism, asynchronous processes, deadlock, boundedness, conflict,

and event driven processes can all be considered.

The APCS is composed of separate interacting components as shown Figure 1.

The APCS involves numerous concurrent and sequential interactions on various part

types and control processes for parts handling equipment. The processing for each

part follows a sequence of operations based on the process plan.

The acquisition of a resource occurs when it is idle, and the release of a resource

occurs when processing is completed. We assume the processing times can be rep­

resented deterministically, which is not without precedence for automated systems.

Deterministic processing times are assigned to each process and are represented by

each transition. Conflict occurs when two or more processes require a common robot

at the same time. Starting with previous contexts of the APCS and ordinary Petri

net constructs, we can formulate Petri net models to partially represent the APCS

in Figure 6.

To complete the Petri net model of the APCS, we add our extensions previously

described in the following manner. In Figure 7, three different parts (represented by

hexagon, square, triangle), each having different process plans, are modeled. Also,

three different resources (represented by circles) with different capability

www.manaraa.com

110

P4 T4

P5
P2 T5

P3 P7
P8|

T12 P13 Til P14

P12 TIO P15

4
T8

T14 T17

P9 PIO T7
T18

P20 T15

T19
P19

2

T16

Figure 6: Ordinary Petri nets model

www.manaraa.com

I l l

(represented by a, b, c, ...) can be assigned in place CR^ j, RR, and NOP for

difFerent process plans. The number of these parts and resources can be controlled

by increasing or decreasing the tokens in places NPi, NP2, ^P^, CR^ j, RR and

NOP. Two types of places (representing ordinary petri net places and place capacity)

are used in the following ways; place NP^^ NP21 •/VP3 and NP/:^ to represent buffer

areas and place NOP to represent the initial number of pallets with capacities n^-,

i=l to 5, respectively. These places are graphically represented using a large empty

square, with the number inside the square indicating an available number of tokens

representing inventory and a number outside the square indicating the buffer capacity

limit.

Three parts use cylinders and robots with different capabilities that potentially

compete with other parts for the same resources. Each process plan for the three

parts can be represented by a unique subnet. The processing times for each plan are

incorporated into the transitions. When a token arrives at all of the input places of

the transition, the procedure is executed based on the firing rule previously described

in section 3.1., and if a conflict case occurs, then the procedure is executed according

to the priority of the transitions. For instance, when transition fg and <9 can be

executed at the same time, transition fg can be processed first according to the first

priority of the transition. However, in this Petri net model, we do not consider

priority tokens as described in section 3.4.

Failure rate also is introduced in the model in the following way. Robots and

cylinders are given failure rates. If a robot or one of the cylinders fails according to

a n e x p o n e n t i a l d i s t r i b u t i o n , t h e n t h e r e s o u r c e t o k e n i n p l a c e R R m o v e s t o p l a c e P r

and the token delays a deterministic amount of repair time in transition Tr before

www.manaraa.com

112

/'PI NPl

vCR4.
NP2

CR5.1:

NP3 T6

Til T12

NOP TIO PIO

T16
'Pr

NP4 P12
RR T17

T18
Pll

T15

Figure 7: Extended Petri nets model

www.manaraa.com

113

returing to place RR. The interpretation of the places and transitions of the

Petri net model in Figure 7 is as follows:

• Cij : cylinder i and j ready to process a job

• iVPj : number of parts in buffer

• NOP : number of occupied pallets in buffer

• : part ready for processing in place i

• RR ; robot ready to process a job

• : a material handling device completely processes a job, start to finish.

Analyzing the Proposed Petri Net Model

After modeling the APCS with Petri nets, we consider several properties of

the Petri net model for analyzing, namely: liveness, boundedness, and conserva-

tiveness[10,19]. This analysis can lead to a better understanding of the qualitative

aspects of the APCS's behavior.

In this paper, the invariant method[10,14,17,19] can be used to analyze a pro­

posed Petri net model for the given APCS, because a knowledge of the invariants

is useful for analyzing some important properties of Petri nets such as properness,

liveness, boundedness and conservativeness.

We have two kinds of invariants[19]: the p-invariant (implies that the weighted

sum of the number of tokens in each place of the Petri net model is constant for all

reachable markings, the weights being given the p-invariant) and Z-invariant (implies

that a /-invariant will give the number of times different transitions should be fired in

www.manaraa.com

114

order that a particular marking may be reproducible) [17]. Therefore, the p-invariant

will be considered to analyze the qualitative aspect of the APCS behavior such as

deadlocks, blocking and starving of a robot, and buffer overflow.

Table 1 shows the p-invariants of the Petri net model for the given APCS (the

quantities of are integers). If /IQ is the initial marking of the Petri net model,

corresponding to the initial state, we have

= ni

= "2

= ^^3

l iq{ N P ^) = "0

F I O I N O P) = 714

/^o(^%,13) = 1

hq{R R) = 1

moipl) = 0

f^oip2) = 0

T ^oips) = 0

Let be any reachable marking from the initial marking (/ig) the Petri net

model. If W(/x) denotes the weighted sum of the number of tokens in each place in

marking //, we have W(/^o) and W(/i) as follows:

www.manaraa.com

115

W'(^o) = wini + W2n2 + + WQTi^-[•

Win) = wifi{NPi) + W2fi{NP2) + w:ifi{NP2) + w^n{CR2;^l^) + {wi+W2)n{P\)

+U;4/X(C/24^14) + {w2 + w^)n{P2) + w^fi{CR^^i^) + {w^ + w^)fi{P^)

4-(ioi -\-w2 + w^)fi(NP^) + (u;i + uj2 + 'w3)kpa) + w^fi(rr) + wq^i{NOP)

+u;2/^(p5) + (u'2 + "^6)^(^6) + ("^2 + ̂6)/^(^7) + ("^2 + '^6)/^(^8)

+{w2 + WQ)fi{Pg) + WQfi{PiQ) + wifi{Pii) + {wi + w^)fi{Pi2)

To show the p-invariant method for a Petri net model of the given APCS, we

consider the conservation problem: showing that tokens are neither created or de­

stroyed. Stated another way, a weighted sum of the number of tokens in each place at

any instant in time should be constant (i.e., invariant). Hence, we have the following

equations:

ni = n{N Pi) + n{Pi) + n{P^) + fi{N P^) + niP^) + n{Pl2)

712 = m^^2) + m^2) + m^^4) + m^4) + /^(^5)

+h{Pq) + fi{Pj) + n{Ps) + KPg) + M^ll)

«3 = m^^3) + /^(^3) + /'(^^4) + ̂ (^4) + ̂ (^12)

N 4 = F I { N O P) + H { P Q) + F I { P J) + H { N P 8) + F I { P Q) + T I { P I Q)

1 = n{CR^^i^) +n{Pi) +n{CR^^i^) +fj.{P2) +H{CRQI^) +H{P^)

1 = F I { R R)

From these results, we observe that the Petri net model for the given APCS is

bounded (no overflow), live (this system does not have deadlocks because transitions

www.manaraa.com

116

are enabled to fire in every state of the APCS), and non-conservative (the number of

jobs being processed does not remain a constant at all times). In addition, we also

may assume that starving and blocking of cylinders and robots are possible in the

APCS.

Table 1: Place and weighted vectors for each place

place weighted vectors for places place weighted vectors for places

NPi wi RR
NP2 W2 NOP WQ
NPs P5 W2

^-^3,13 u^4 PQ W2 + WQ

Pi wi + Pi W2 + WQ
Ci?4 14 Ps W2 + WQ

P2 P9 W2 + WQ
PlO WQ

Pz wi + Pn W2
iVP4 WI+W2 + Pl2 Wl +
iVP4 + ti;2 + u;3

www.manaraa.com

117

PERFORMANCE ANALYSIS

A simple Petri net model of the logical and causal dependencies in the manufac­

turing system is not sufficient to answer APCS characteristics such as time, resources

availability, multiple products, different processes, priority, and capacity. Adding

these characteristics allows for such a temporal performance analysis. The main

applications of these nets will be in the APCS.

Two types of constraints affect the performance of the APCS. The first type is

related to the internal structure that determines how the various procedures work

in the system; some procedures are processed sequentially, and others are processed

concurrently. The APCS has both sequential and concurrent processing activities.

The second type of constraint magnify time, resources, multiple parts, different pro­

cesses, capacity, and priority according to the APCS context. The APCS has a

limited amount of productive time because of the constrained resources. In addition,

resource availability and capacity limits are used to represent the productive capac­

ity of the system. Priority is used to resolve conflict situations that arise when work

orders compete for a single resource.

Maximum Production Rate of the System

If demand is continuous at a rate that is low enough, the APCS will be able to

meet all the demand. In this case, the rate at which products are being processed will

precisely correspond to the demand rate. However, beyond a certain demand rate,

products will compete for resources, creating a backlog of work. This bound precisely

determines the maximum production rate of the APCS, and is a function of time,

resources, capacity, failure rate and priority. This measure of performance, which

www.manaraa.com

118

characterizes the maximum rate of processing of the overall system, is important

because it limits the allowable rate of supply that can be produced.

The Process Schedule

The production schedule specifies the time at which work orders are released into

the system. Assume that the processing starts at time = 0 and that a large demand

forces processing to occur continuously at the maximum production rate. In this

section, we want to determine the schedule for the various processes (represented by

transitions) for various demand rate. From the flow time (the time interval between

the moment the demand was received and the moment a product was made), we can

determine the tardiness of the work order.

By changing the control variables in the model (e.g. resources, time, etc.), and

executing the Petri net model for the given APCS, we can determine execution sched­

ules for each process and a production schedule for scheduling purposes. Therefore,

the production schedule of the APCS will be changed on the basis of process sched­

ules for each process and characteristic dynamic behaviors of the APCS. Since process

times are assumed deterministic, the process schedule computed here will characterize

the deterministic behavior of the APCS. Starting from the initial stage, the process

can be continued repetitively until demand is satisfied. Thus, the best performance

of the APCS will be obtained with respect to system characteristics such as time,

resource availability, capacity, priority, and demand. The measures of performance

described above are important in evaluating the performance of the APCS. If one

demand arrives or multiple demands arrive simultaneously, it will be possible from

the process schedule to evaluate the performance of the APCS.

www.manaraa.com

119

Numerical Results

Using our extended Petri net models, we have implemented a deterministic and

stochatic algorithm to describe and evaluate the APCS in Figure 7. The approach

is based on the Petri net graph structure, firing rules and the state of the Petri net

model. We create an input file (including transitions, places, input-output relations

of transitions, tokens in each place, processing time for each transition, resource

availability, number of parts, capacity of the storage place, priority, and failure rate)

in order to model and evaluate the APCS. By changing different variables, we can

create output files with the following results:

• The maximum production rate of the APCS [20]

From the incident matrix, we can determine all the circuits (possible flows of to­

kens), the maximum circuit time (longest circuit flow time) and the throughput

of the Petri net model[7,20].

• Processes and production schedules

Schedules for the various processes (represented by transitions) and production

schedules for various demand rates can be evaluated.

• Availability (percentage of idle time) of resources in the APCS.

From the state variable (A) are defined as followed:

1 if resource is available

0 if resource is not available

A =

We know the availability and utilization for resources in place RR, CRj j and

NOP of the Petri net model at consecutive time instances.

www.manaraa.com

120

• Statistical analysis

Confidence intervals for maximum production rates on the basis of resource

failure rates and deterministic repair times.

We investigated five cases in which we perturbed the APCS to produce results

that can be applied to redesign the APCS and to design and analysis of the material

handling operation. The perturbations included the processing time for each tran­

sition (case 1), resource availability (case 2), number of resources (case 3), storage

capacity (case 4), and priority and failure rate (case 5) as follows;

• Case 1

We initially used real deterministic processing times (ij = 1.5 seconds, ^2 =

1.5 seconds, ^3 = 1.5 seconds, = 12.0 seconds, ig = 12.0 seconds, <g = 12.0

seconds, = 0.5 second, ig = 1.0 second,ig = 7.0 seconds, ijQ = 8.0 seconds,

til = 10.0 seconds, ^^2 = seconds, ^^3 = 1.5 seconds, ^^4 = 9.5 seconds,

= 1.0 seconds, fjg = 16.0 second, = 16.0 seconds, Zjg = 16.0 seconds)

and varied these times to increase the maximum production rate.

In this case, there are three process plans found in the Petri nets model of the

given APCS based on the different parts. Each process plan has a procedure

associated with different shapes of token as follows:

— Black large size parts are represented by hexagons

<2^=1.5 second, ^4 = 12.0 seconds, t'j = 0.5 second, = 1.0 second, fjg

= 16.0 seconds.

— Silver large size parts are represented by squares

www.manaraa.com

121

^2 = 1.5 seconds, — 12.0 seconds, ty = 0.5 second, fg = 1.0 second,fg

= 7.0 seconds, fjQ = 8.0 seconds, ^11 = 10.0 seconds, ti2 = 10.0 seconds,

^23 = 1.5 seconds, = 9.5 seconds, ijg = 16.0 seconds.

— Small size parts are represented by triangles

<3 = 1.5 seconds, /g = 12.0 seconds, tf = 0.5 second, ijg = 1.0 second,

tl'j = 16.0 seconds.

On the basis of the incident matrix, three circuits (three possible flows of

tokens) with the longest one being the critical are founded in the Petri net

model[7,20] The critical circuit of this Petri net model is associated with pro­

cesses <2> ^5> ^7i ^8' ^9' ^10' ^11' ^12' ^13' ^14' ^19- This critical circuit de­

termines the critical circuit time (72.5 seconds) that indicates the maximum

flow time of the APCS. However, in general, the maximum production rate

governed by the bottleneck. Because of the configuration of the APCS, the

maximum production rate (= 1/minimum flow time) is used as a measure of

system performance.

To increase the maximum production rate (0.014 per second), we must reduce

processing time for transitions on the critical circuit. For example, if the process

time for transition t'j is reduced from twelve to six, then the critical circuit time

becomes 66.5 seconds which is an increase in the maximum production rate.

• Case 2

The real deterministic process time is fixed and the number of moving pallets

in place NOP is varied to determine the number of pallets that maximize the

resource utilization.

www.manaraa.com

122

To solve this kind of problem, first of all, the APCS needs to increase moving

pallets in place NOP from one to three. This would increase the maximum

production rate from 0.014 to 0.017 per second. Even if there are more than

two pallets in place NOP, we still have the same maximum production rate.

Therefore, we do not need more than two pallets to increase the maximum

production rate and utilization of the APCS without improving process times

for , ^2) ^3' ^4' ^5' ^6' ^7' ^8' ^19"

• Case 3

In this case, the real deterministic process time, and number of moving pallets

(same as used in case 2) are fixed, but the number of robots in place RR is varied

by two. Then the maximum production rate is increased but it is difficult to

install one more robot in the APCS because of initial bad space allocation.

Still, this result can be considered when we design a full-scale APCS in the

material handling facility.

• Case 4

The real deterministic process time, number of moving pallets (same as used in

case 2) and the number of robots (=1) are all fixed, but capacities of the places

NPi, NP2, NP^, NP^ are varied. In this case, it is possible to reduce the

number of three different parts available to the buffer area NP^, NP2, NP^,

NP^ up to each of two parts to maintain the same production rate.

• Case 5

A failure rate (0.0125, 0.025, 0.0375, and 0.05) and a deterministic repair time

(100 time unit) has been given to a robot in place RR on the basis of the

www.manaraa.com

123

exponnential distribution with A = 0.0025 and n = 0.1975, A = 0.005 and fi =

0.195, A = 0.0075 and fi = 0.1925, A = 0.01 and = 0.19 per hour, respectively.

If the robot in place RR fails, then the system cannot continue to perform its

tasks.

Table 2: Confidence interval for maximum production rate

failure rate confidence interval for maximum production rate

0.0125 0.0165 - 0.0175
0.025 0.0162 - 0.0177
0.0375 0.017 - 0.0178
0.025 0.0169 - 0.0181

The confidence interval for the maximum production rate that can be obtained

by using the stochastic algorithm was run 1000000 times on the basis of the

deterministic time (case 2), number of moving pallets in place NOP (= 2 to 10),

number of robot in place RR (=1) and different failure rates. Table 2 shows

confidence intervals of 95 % for the maximum production rate under different

failure rates.

www.manaraa.com

124

CONCLUSION

In this paper, we first examine the APCS and extend the fundamental constructs

of Petri net models. We then build a Petri net model of the given APCS, analyze

important qualitative aspects of APCS behaviors and finally evaluate performances

of APCS.

A modified deterministic and stochastic algorithm is developed to describe and

evaluate the Petri net model of the given APCS. The input and control mechanisms

of the Petri net model are varied, implemented, and evaluated to produce results that

can be used to redesign the APCS and also can be directly applied to the design and

analysis of the full-scale material handling operation.

www.manaraa.com

125

BIBLIOGRAPHY

[1] C. Andre, P. Armand, and F. Boeri, "Synchronic Relations and Applications in
Parallel Computation", Digital Processes b, 99-113, 1979.

[2] A. Arbel, and A. Seidmann, "Performance Evaluation of Flexible Manufacturing
Systems", IEEE Transactions on Systems, Man, and Cybernetics^ 1(5), 606-617.

[3] B.W. Choi, and W. Kuo, "Performance Analysis of a Generic Naval C2 Battle
Group System by Use of Timed Petri Nets", Proceedings of the Winter Simula­
tion Conference, San Diego, 1988.

[4] B.W. Choi, and W. Kuo, "Petri Net Extensions for Modeling and Validating
Manufacturing Systems", Int. J. Prod. Res., (accepted for the publication by).

[5] D.H. Crocket, A.A. Desrochers, F. DiCesare, and T. Ward, "Implementation of a
Petri Net Controller for a Machining Workstation", Proceedings of a Conference
on Robotics and Automation 5, lEE Society Press, New York, 1861-1867, 1987.

[6] H.J. Genrich, and K. Lautenbach, "System Modeling with High-Level Petri
Nets", Theoretical Computer Science 13, 109-136, 1981.

[7] H.P. Hillion, "Performance Evaluation of Decision Making Organization using
Timed Petri nets", M.S. thesis, M.I.T., (Cambridge, Mass.).

[8] A.L. Hopkins, and G.R. Walker, "The State Transition Diagram as a Sequential
Control Language", Proceedings of the 25th IEEE Conference on Decision and
Confro/1096-1101, Dec, 1986.

[9] K. Jensen, "Coloured Petri Nets", Net Theory and Applications{Lecture Notes
in Computer Science), No.254, Springer-Verlag, Bad Honnef, Germany, 248-299,
1987.

[10] K. Jensen, "Coloured Petri Nets and the Invariants-Method", Theoretical Com­
puter Science 14, 317-336, 1981.

[11] K. Jensen, "High-Level Petri Nets Applications and Theory of Petri Nets",
Informatic-Fachberichte 66, Springer-Verlag, 166-180, 1981.

[12] J. Magott, "Performance Evaluation of Concurrent Systems using Conflict- Free
and persistent Petri Nets", Information Processing Letter 26, 77-80.

www.manaraa.com

126

[13] J. Martinez, P. Muro, and M. Silva, "Modeling, Validation and Software Imple­
mentation of Production Systems Using High Level Petri Nets", Proceedings of
the 1987 IEEE international Conference on Robotics and Automation Raleigh,
N.C., 1180-1185, April, 1987.

[14] G. Memmi, and G. Roucairol, "Linear Algebra in Net Theory", Net Theory and
Applications(Lecture Notes in Computer Science), Springer-Verlag, Hamburg,
Germany, 213-223, 1979.

[15] T. Murata, and N. Komoda, "Liveness Analysis of Sequence Control Specifica­
tions Described in Capacity-Designated Petri Nets using Reduction", Proceed­
ing of the IEEE International Conference on Robotics and Automation, Raleigh,
N.C., 1985-1990, April 1987.

[16] T. Murata, "Petri Nets : Properties Analysis and Applications", Proceedings of
the IEEE, 77(4), April 1987.

[17] Y. Narahari, and N. Viswanadham, "A Petri Net Approach to Modeling and
Analysis of Flexible Manufacturing Systems", Annals of Operations Research, 3,
449-472.

[18] F. Paul, "Time, Petri Nets, and Robotics", IEEE Transactions on Robotics and
Automation!{A), 417-433, 1991.

[19] J.L. Peterson, Petri Net Theory and the Modeling Systems, Prentice-Hall, En-
glewood ClifFs,N.J., 1981.

[20] C. Ramchandani, "Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets", Technical Report No.120, Laboratory for Computer Science, M.LT.,
Cambridge, Mass, 1974.

[21] J. Sifakis, "Performance Evaluation of Systems using Nets", Net Theory and
Applications{hecime. Notes in Computer Science), Springer-Verlag, Berlin, Ger­
many, 307-319, 1978.

[22] N. Viswanadham, and Y. Narahari, "Coloured Petri Net Models for Automated
Manufacturing Systems ", Proceedings of the IEEE International Conference on
Robots and Automation, Raleigh, N.C., 1985-1990, 1987.

[23] Z. Weixiong, "Representation of Assembly and Automatic Robot Planning by
Petri Net", IEEE Transactions on Systems, Man, and Cybernetics\9{2), 418-
422, April 1989.

www.manaraa.com

127

PAPER IV.

AN ENHANCED METHOD FOR MANAGING PROBLEMS IN A

FLEXIBLE MANUFACTURING MACHINE

www.manaraa.com

128

ABSTRACT

One of the problems that arises in flexible manufacturing environments is min­

imizing the number of tool changes. We introduce and review this problem as an

overall model that can be formulated as a linear and non-linear integer problem. We

then extend this model on the basis of two more constraints: (l)jobs that require

more than C tools, with C representing the magazine capacity of the machine, and

(2)the increased processing time that is required for tuning the tool offset after a

tool in slot #1 is changed. Since this model increases computational complexity, we

propose a heuristic approach for job sequencing. This approach is locally optimized

to minimize the number of tool changes.

Next, we introduce the fundamental constructs of the Petri net models to de­

scribe sequence control specifications for a flexible manufacturing machine. We then

examine a flexible manufacturing cell that has two automated guided vehicles and a

milling machine (DM4400) with an automatic tool changer. Finally, we build a Petri

net model as the interpretation schema and implementation model with respect to

the local optimal job sequence, the tool changing-procedure, and the machining job

of the milling machine.

www.manaraa.com

129

INTRODUCTION

The tool-changing and machining problem is recognized as having a key effect

in flexible manufacturing environments, an effect that creates financial problems on

flexible manufacturing systems(FMS). Automatic tool-changing and machining are

seen as major factors for an FMS when a set of computer numerically controlled(CNC)

machines is used to manufacture parts. Each machine has a limited-capacity tool

magazine. An automatic tool-changer makes it possible to perform several sequential

operations on a part, without incurring the setup delays necessary for changing tools

manually. In FMS, all machines need (1) tool changes before machining jobs, and (2)

control procedures to observe and supervise machining processes. The time required

for making tool changes and control procedures becomes a significant portion of the

total job processing time, which, in turn, implies that processing time can be reduced

by minimizing the number of tool changes and using efficient control methods for

machining processes. The reducing processing time is the general motivation for

studying a machine-loading problem in which the total number of tool changes is

minimized (Section 2,3), and a machine control problem (Section 4).

Steckeand Browne [1], Mortimer [2], Kiran and Krason [3], and Dupont-Gatelmand

[4] have introduced advanced concepts of the flexible manufacturing system and en­

vironments and have presented descriptions of the flexible manufacturing machine.

A machine-loading problem in FMS which was studied originally by Stecke [5] and

Stecke and Talbot [6], has been examined and extended by Tang and Denardo [7,8].

In their study, the keep tool needed soonest(KTNS) policy is proved on the basis of

the validity of the KTNS that was already established by Roger [9] and Mattson et

al. [10]. Roger and Mattson's study is in the context of computer memory storage

www.manaraa.com

130

techniques in the situation where each job requires exactly one tool, and is an optimal

method for studying the tool-changing problem.

Tang and Denardo [7,8] believed the total number of tool changes can be min­

imized on the basis of two performance criteria: (1) minimize the number of tool

changes and (2) minimize the number of times tools are changed. In addition, Daskin,

Jones, and Lowe [11] analyze implementations of the tool-changing problem associ­

ated with a flexible system that produces flat sheet-metal parts with interior holes.

Bard [12] considered the problem of scheduling N jobs on a single machine equipped

with an automatic tool interchanger. This problem included two considerations: (1)

the total number of tools required to process all N jobs is greater than the capacity

of the tool magazine, (2) processing times and changing times are independent.

In previous studies, authors assumed that the tool magazine has C tool slots

(magazine capacity) and each job requires no more than C tools. Researchers also

assumed that the tool-changing time is the same when any tools are changed. How­

ever, our industrial background is somewhat different from theirs.

We surveyed FMS environments including several milling machines and found

two differences. First, several jobs required more than C tools at certain times. This

implied that a single job cannot be accomplished without changing tools. Second,

one tool was chosen as a reference tool. This tool was used to setup the X, Y, Z

axes (=0,0,0) at the beginning of the job process. However, other tools have different

lengths that may be either longer or shorter than the reference tool. This difference

is called the "tool offset", which may be either positive or negative. All Z axis moves

must add or subtract this offset so that the actual cutting height of the other tools

is the same as the reference tool [13]. Once these offsets have been calculated the

www.manaraa.com

131

appropriate values are then simply retrieved from the memory as they are needed.

Therefore, we need more processing time when a reference tool is changed than when

other tools are changed.

The model just described considers two constraints and gives solutions for an

optimal job sequence and for minimizing the number of tool changes. But this model

has increased computational complexity that is NP hard because it is clear that an

optimal job schedule can only be determined by solving the tool changing-problem

for each individual job schedule. This indicates that the above model is not realistic.

Therefore, we need to develop a heuristic approach that can be locally optimized to

minimize tool changes and also simplify the necessary computations.

First, we consider the case in which the tools for all operations are kept in the

tool storage area. If all the requisite tools are not initially placed on the magazine,

one or more tool changes must occur before the machining job can be processed. A

tool change occurs when a tool is removed from the magazine and a different tool is

inserted on the magazine of the machine.

On the basis of these basic assumptions, an overview of the machine loading

problem in which the total number of tool changes is minimized, a literature review,

and the objective of this paper are introduced in section 1. We then extend the

overall model for minimizing the number of tool changes and also show that this

model has increased computational complexity in section 2. In section 3, we develop

a heuristic approach for finding a solution that is locally optimized with respect to

job sequencing and minimizing tool changes.

In section 4, we introduce the fundamental constructs of the Petri net models to

describe sequence control specifications [14-18] for a flexible manufacturing machine.

www.manaraa.com

132

We then examine a flexible machine cell(FMC) that has two automated guided ve-

hicles(AGVs) and a milling machine (DM4400), which can hold 10 tools and has an

automatic tool changer [13]. We also build a Petri net model as the interpretation

schema and implementation model with respect to the local optimal job sequence on

the basis of the heuristic approach described in section 3, the tool changing procedure,

and the tooling job of the milling machine.

www.manaraa.com

133

PROBLEM STATEMENTS AND MODELING

Suppose that a batch of jobs has to be processed, one at a time, on a single

flexible machine in the flexible manufacturing system. Let N be the number of jobs

and M be the total number of tools required to process N jobs. Each job requires

a subset of tools that is represented by an M x N matrix A with aj^j = 1 if job j

requires tool i and a^j = 0 otherwise, for i = 1,2, ... , M and j = 1,2, ... , N. The

tool magazine has a limited capacity C(< M), and sometime jobs require more than

C tools.

We assume that the tool magazine always has full capacity while the jobs are

processed. We also assume that the reference tool (the tool in slot ^\) is fixed when

a batch of jobs has to be processed because more processing time is needed when

the reference tool is changed than when other tools are changed. A tool that will

be placed in slot ^1 is chosen by comparing the frequency of its use in the total job

process. Therefore, at any instant, tool changes occur less than C-1. A job sequence

is a permutation of (1,2, ... , N), or equivalently, of the columns of A. Given a job

sequence, a tool change counts every time the automatic tool changer removes a tool,

replaces it in its slot in the tool magazine, automatically selects the next needed tool

from the tool magazine, and installs it in the quill.

The objective of this section is to determine the optimum sequence in which to

process any individual job and correspondingly to determine the set of tools that

must be placed on the machine to minimize the total number of changes. Minimizing

the number of tool changes is equivalent to minimizing the total amount of time

required to manufacture each specific item. An item is a piece of material that

is fastened to the milling machine table, and which is cut, milled, drilled, etc., to

www.manaraa.com

134

produce something that either is removed from the milling machine because it is

complete, or which must be removed from the milling machine for further machining

operations at another work station. In addition, we need several decision variables to

specify the model. Let Xj^ = 1 if job j is at the nth position in the sequence and

= 0 otherwise. The moment in time after processing the nth position job, but before

any tools are changed, is called instant n. Let = 1 if tool i is on the magazine

at instant n and = 0 otherwise. To model this new problem based on Tang and

Denardo [7,8], Daskin, Jones, and Lowe [11], and Bard [12], we implemented our

initial study as follows:

1. Let us first consider a case in which jobs (= k) require more than C tools.

Let k be the number of jobs that require more than C tools and r be the number

of subjobs of each job k for k = 1,2, ..., K; r = 1,2, ..., R. Each job k can be

divided by subjobs in which sj, are processed in an independent sequence,

and each job requires fewer than C tools including the reference tool. This

implies that each job k has its own independent sequence that is r factorial for

r = 1,2, ..., R, where r is the total number of subjobs to be processed in a

fixed sequence. If (k = 1) requires more than C tools in given jobs

• • •) ijV' need to divide job ^3 and select fixed sequences of the job

and combine one of these job sequences with initial jobs ,J2) • • • > iyy-

optimal sequence •S11)'S12) • • • i -sir ^ determined by minimizing

the number of tool changes of a given jobs ji, j2, (-sn ,5^2) • • •) -^Ir)' • • • 1 JN''

where 5^ j, ..., is a fixed sequence.

www.manaraa.com

135

2. Now let us consider a case in which the reference tool (the tool in slot #1)

needs replacement.

We fix a tool in slot ^^1 when a batch of jobs has to be processed as a reference

tool because more processing time is needed when the reference tool is changed

than when other tools are changed. Two constraints are considered:

"In ~ l,n = \,...,N + H —K

M
YjHu - C -\,n = \,...,N + H - K
i=2

D
where H = the total number of subjobs in k = 1,2, ..., K.

Mathematically, the overall problem can be formulated as a non-linear integer

program that minimizes the number of tool changes as follows:

N-^H-K M
Min ^ E -"i,n-l)

n=l i=2

subject to

N+H-K
Y: xjn = = + (1)

n=l
N+H-K
Y: Xjn = l,n = l,...,N + H-K (2)
i=i

ui^ = l,n = I,..., N + H — K (3)

M
= C - l , n = 1 , . . . , y V -) - / / - A ' (4)

i=2

www.manaraa.com

136

M
Y^Hkr ^ C-1,/: = = 1,...,/? (5)
i=2

(6)

(7)

where H = the total number of subjobs in k = 1,2, ... ,K, u^q (i=l,

. . M) a r e g i v e n i n i t i a l c o n d i t i o n s . T h e s e w i l l b e a s s u m e d a s U^Q = 1 for all i, and

^ikr ~ required for the job = 0; otherwise, for i = 2,3, ...,

Constraints (1) and (2) above ensure that each job is assigned to exactly one

instant. Constraints (3) and (4) indicate that one reference tool is fixed and ensure

that no more than C-1 tools can be placed on the flexible machine. Constraint (5)

indicates each subjob requires no more than C tools including the reference tool.

Constraint (6) assures that if job j requires tool i and is assigned to nth position,

then tool i will be on the magazine at instant n. Finally, constraint (7) denotes the

integrality requirement for each

The solutions obtained from this model give an optimal job sequence and a

way to minimize the number of tool changes and can be equalized in a number of

ways on the basis of the suggestions of Tang and Denardo [7,8]. Unfortunately, this

model also have tremendous computational complexities that are undesirable. In

real manufacturing environments, this model is neither efficient nor useful, even for

relatively small problems. For this reason, we wish to discuss and develop one good

heuristic approach for job sequencing problem.

M, k = 1,2, ..., K, r = 1,2, ..., R.

www.manaraa.com

137

THE TOOL-CHANGING PROBLEM

The tool-changing problem is naturally composed of two issues: (l)sequencing:

find an (optimal) job sequence and (2)tool changing: determine which tools should

be changed on the tool magazine at each moment in order to minimize the total

number of changes for a given job sequence.

Tang and Denardo [7], and Bard [12] proved that the tool changing problem can

be solved in 0(MN) operations by applying a KTNS policy as follows:

1. At any instant, insert the tools that are required by the next job.

2. If tools are inserted, the tools that are not removed are needed the soonest.

The objective of this problem is to determine the set of tools to be placed on the

machine so that the total number of tool changes is minimized. A KTNS policy is

optimal for the tool- changing problem based on three theorems: (l)Each KTNS pol­

icy minimizes the total number of tool changes, (2)every KTNS policy is an optimal

tool changing policy, and (3)if the job sequence is specified, then the KTNS policy is

optimal for the tool-changing problem from Tang and Denardo [7,8], and Bard [12].

Also many studies show that any KTNS policy is found to be optimal for the tool-

changing problem that is a subproblem for each job sequence.

The job-sequencing problem then is to find the optimal job sequence, that is, the

sequence where the tool changing problem is solved for every job sequence. Clearly

then the optimal job sequence can be determined by solving the tool-changing prob­

lem for each individual job sequence. However, this approach is undesirable, as

mentioned in Section 2, because the total number of job sequences is N!. This is

an extremely complicated computational problem. Therefore, we need to develop a

www.manaraa.com

138

heuristic approach for finding the local optimal job sequence, one that both minimizes

the number of tool changes and simplifies the necessary computations.

Job Sequencing

We first cissume that the reference tool (the tool in slot ^1) is fixed when a

batch of jobs heis to be processed. The tool which will be in slot #1 is chosen by

comparing the frequency of its use in the total job process. Subsequently, we consider

jobs requiring more than C tools. These jobs can be divided by subjobs -sj • • •'

•®lr> -521'•'22' •••' •®2r' •••' •®/fcl'**' ^kr- subjob will be processed in

a fixed sequence where is a sequence of for k = 1,2, ..., K.

The main objective of this section is to determine how to control jobs that require

more than C tools. To find a optimal fixed sequence 5^,., let us first consider one

constraint and several variables as follows:

• choose one tool that is required more than any other tool for all of the jobs and

set up this tool as the reference tool.

• yjf^ = 1 if job j is fixed with and yjj. = 0, otherwise.

• Cjj = 1, if tool i is required for the job j, a^j = 0; otherwise, for i=2,3, ..., M

and the reference tool is fixed.

• = 1, if tool i is required for the job = 0, otherwise; for i = 2,3,

..., M, k = 1,2, ..., K, r = 1,2, ..., R.

The value is obtained by permutating 1) when the reference tool is

included (or not), where t = the total number of tools that are required for the fixed

www.manaraa.com

139

job sequence and C = limited capacity of the tool magazine. Mathematically,

this problem can be formulated to select jobs that will minimize the number of tool

changes between one job and the first subjob 5 and between any other other job

and the last subjob 5 ^ for k = 1,2, r = 1,2,..., 7? is as follows:

R
MinY,\Ej\ + lFj\ (8)

r=l
where Ej = a j — s and Fj = a j — s

subject to

K
E Vjk = l,i = l,2,...,iV-K (9)
k=:l

N-K
E = 2,A: = 1, 2 , . . . , / ^ (10)
;=i

a j < C - \ (1 1)

Skr < C-\ (12)

aij = 0,l,Vi,i (13)

Sikr = 0,l,Vi,fc,r (14)

The parameter for k = 1,2, ..., K and r = 1,2, ..., R is scheduled in a fixed

order immediately after one job and before any other job that satisfies the objective

function of Eq. (8) based on constraints of Eqs. (9-14).

We have determined the number of jobs that will be in fixed sequences by con­

sidering the previously described two constraints; still, we have other jobs that should

be arranged in a job sequence. Therefore, we examine and propose several heuristic

approaches for arranging the job sequence.

www.manaraa.com

140

We first consider two constraints as explained in Section 1, and choose the num­

ber of jobs that will be fixed. The data of our problem consist of an M x (N + H - K)

tool-job matrix A and capacity C with several jobs in fixed sequences. Now we focus

on solving the sequencing problem since we know that the tool-changing problem is

easy to solve according to the individual job sequence. Let us examine several useful

heuristics that efficiently reduce complexity (as described in Section 1) for solving

the sequencing problem as follows.

1. Traveling salesman heuristics

To study the job sequencing problem, let us define a graph D as (V,A), where V

is a set of vertices and A is a set of ordered pairs of elements of V. The vertices

and ordered pairs (so-called edges) represent a set of jobs and the number of tool

changes incurred when this pair of jobs is processed, respectively. This graph is

related to the Hamiltonian path on the graph in order to find the shortest path.

This path corresponds to a minimum number of tool changes. Therefore it is

not difficult to find the shortest Hamiltonian path on a graph, because finding

the shortest Hamiltonian path is an NP-complete problem, equivalent to solving

the traveling salesman problem (TSP) and scheduling industrial processes (SIP)

[19].

These heuristics consist of finding a shortest Hamiltonian path on the complete

graph with edge lengths [20,21]. Such a problem is equivalent to solving the

TSP that considers a graph D = (V,E,lb), where V is the set of jobs, E is the set

of all pairs of jobs, and the length lb(i,j) of the edge {i,j } is an underestimate

of the number of tool changes needed between jobs i and j when these jobs are

consecutively processed in a sequence.

www.manaraa.com

141

More precisely, lb(i,j) = max(| U Tj | - C, 0), where is the set of tools

required by job i (i = 1,2,..., N). Notice that, if each job requires exactly C

tools, then lb(i,j) is equal to the number of tool changes between two jobs i

and j in any schedule. We have several heuristic approaches for constructing a

shortest TSP path in D:

• shortest edge heuristic [7] or greedy feasible [21]; complexity: O(A'^^logN)

• nearest neighbor heuristic with all possible starting nodes [22,23];

complexity: 0{A'^^)

• farthest insertion heuristic with all possible starting nodes [22,23];

complexity: O(iV^)

• branch and bound heuristic [24]; complexity; exponential.

2. Block minimization heuristics [25]; complexity: 0{N^)

We propose a different method with respect to the TSP heuristic for a given

instant of the tool changing problem. A directed graph D = (V,E,inb) is con­

sidered. The length mb(i,j) of arc (i,j) is defined by mb(i,j) = | Tj \ Tj |, where

is the set of tools required by job i (i = 1,2, ..., N), and Tq is an empty set.

The length of mb(i,j) represents the number of tool changes between jobs i and

j, for any sequence in which jobs i and j must be sequential.

Each TSP path of D finishing at node 0 represents a sequence of jobs, and the

length of the path is an upperbound on the total number of tool changes by the

sequence. In this heuristic, we propose two implemented heuristics to construct

a short TSP path in D eis follows:

www.manaraa.com

142

• NN block minimization, a nearest neighbor with all possible starting nodes;

complexity: 0{N^)

• FI block minimization, a farthest insertion with all possible starting nodes;

complexity: O(iV^)

3. Greedy heuristics; complexity: 0(MiV3)

TSP heuristics and the block minimization heuristics do not take all job se­

quences into account when estimating the number of tool changes required

between a pair of jobs. For instance, lb(i,j) and mb(i,j) is a lowerbound and

upperbound on the number of tool changes between the two jobs i and j. If

no job requires more than C/2 tools, then lb(i,j) = 0 for two jobs i and j and

a random job sequence will arbitrarily be picked up on the basis of the these

edgelengths lb(i,j) = 0. Therefore, we consider this an unsuitable situation and

propose the following heuristic.

• Start with the partial job sequence with job 1 <t=(1), and Q={ 2,3, .. .,N}.

• Let NC(j) be the number of tool changes of the partial sequence (cr,j) for

each job j in Q.

• Let i be a job in Q for NC(i) = {min NC(j), j G Q}; let cr = (cr,i) and Q

= Q\ {i}.

• If Q is not empty, then go to (c); otherwise stop with the complete sequence

<7.

O
This heuristic has 0(MA'^) computational complexity and gives slightly

improved performance by considering all the partial sequences.

www.manaraa.com

143

General Procedure

Let us consider a simple example that has 10 jobs (N = 10) to be processed on

a flexible machine that can hold 5 tools (C = 5). These ten jobs need a total of 12

different tools (M = 12). The tool requirement vectors are given in Table 1.

Table 1: The Tool Requirement Vectors

job 1 2 3 4 5 6 7 8 9 10

1 I 1 0 0 1 1 I 0 1 0
2 0 1 0 1 0 1 0 0 0 1
3 0 0 1 0 1 0 0 0 1 0
4 1 1 1 0 0 0 0 0 0 1

t 5 0 0 0 0 1 1 0 1 1 0
0 6 0 0 1 1 0 0 1 0 0 1
0 7 1 0 1 0 0 0 1 0 0 1
1 8 0 0 1 1 1 0 0 0 0 0

9 0 0 0 0 1 0 0 0 1 0
10 1 0 1 0 0 1 0 1 0 0
11 1 0 1 0 0 1 0 1 0 0
12 0 0 1 1 0 0 0 0 0 0

STEP 1

In this example, tool ^1 is required for six jobs in which it is the most frequently

used tool. So we choose tool ^^1 as a reference tool and set this tool in slot on

the magazine. There is only one job (= job 3) that requires more than C tools,

therefore = job 3 can be divided by 52] i'Sl2» • • • > based on permutation fPc

as described in Section 2.

We choose job 1 and have two subjobs sjl) ^12' where subjob requires tools

4,7,10, and 11 and subjob 3^2 requires tools 3,6,8, and 12 for job 3. If ^22

www.manaraa.com

144

are scheduled in a fixed order between job 1 and job 4, then it is minimized by

Equation(8). We set up a fixed subsequence [p ={job 1, job 3 (= •822)5 and job

4} and reduce the original set of ten jobs to these eight: {^,2,5,6,7,8,9,10}.

STEP 2

Let us consider the next situation. For any job i, F(i) will be the set of jobs

that require only a subset of the tools required by job i. More formally, we let F(i)

= ^ 111 this case, no tool changes are required if all the jobs in F(i)

are scheduled in any order immediately after job i. Therefore, it must be optimal to

schedule the set of jobs F(i) after job i. Let us consider the tool requirement vectors

given in Table 1. It can be seen that /Ig < ^45 and /Ig < /Ig; hence F(5) = {9}

and F(6) = {8}. In this case, no tool changes are required for job sequence (5,9) or

(6,8). Based on this observation, we reduce the original set of ten jobs to these six;

{/9,2,5,6,7,10}.

STEP 3

The third step consists of finding a shortest length path using any heuristics that

are introduced. In this paper, we use the Greedy heuristics procedure for finding an

optimal job sequence as follows.

• In our example, seven remaining jobs are considered in this step. First, we start

with job 1 as a partial job sequence a = (2), and Q = {/3,5,6,7,10}.

• Compute NC(j) of the partial sequence (cr,j) for each job j in Q. Choose i to

be a job in Q for NC(i) = min {NC(j), j G Q}; let a = (cr,i) and Q = Q\

{i}. Finally, we find the four shortest sequences, {2,7,10,/9,5,6}, {2,10,7,/},5,6},

{2,7,10,/9,6,5}, {2,10,7,/9,6,5}, in Table 2.

www.manaraa.com

145

Table 2; The number of tool changes for each job sequence

Sequencing Job Sequence Number of tool changes

1 2,7,10,/?,5,6
2 2,10,7,/9,5,6
3 2,7,10,/),6,5
4 2,10,7,/9,6,5

13
13
13
13

It follows that the length of each sequence is a lower bound on the number of

tool changes needed to execute the corresponding job sequence. Consequently, the

length of a shortest job sequence is a lower bound on the number of tool changes

incurred by the optimal job schedule.

In step 4, we apply the KTNS policy to find a job schedule that may pro­

duce a smaller number of tool changes than the current best job schedule. In this

example, the four shortest sequences, {2,7,10,/),5,6}, {2,10,7,/),5,6}, {2,7,10,/j,6,5),

{2,10,7,/9,6,5}, in Table 2 can be a local optimal for the minimization of the tool

changes. Therefore, we wish to suggest using one of these four job sequences to

reduce the total processing time for a batch of jobs.

STEP 4

www.manaraa.com

146

PETRI NET REPRESENTATION

Petri nets have been useful tools for modeling, analyzing, and evaluating the

behaviors and sequence control specifications of the FMS with respect to concurrent,

asynchronous, deadlock, and conflict machine actions. Theories and applications

of the Petri nets have been useful tools and can be adapted to model and analyze

versatile configurations of the FMS by adding suitable extensions.

In FMS, the high flexibility of control procedures is another important factor,

because machines that are composed of FMS make it possible to perform many

sequential and concurrent (include conflicting) operations without incurring time de­

lays. However, traditional methods for control procedures and for developing control

programs do not provide sufficient flexibility because comprehending control proce­

dures is very complicated and difficult [15,16].

To resolve this problem, the Petri net model has been experimentally applied

to a FMC to show the flexibility gained by using the model. Using the eloquent

representation of the Petri net model, various types of machine and equipment in

FMCs can be Ccisily supervised and controlled, and the hours required to develop

control programs can be significantly reduced.

Petri Nets

1. Ordinary Petri net

A Petri net graph uses circles to represent places (states) and bars to represent

transitions (events). Input-output relations are represented by directed arcs

between places and transitions. Tokens reside at a place when it is active.

www.manaraa.com

147

Tokens flow through the net depending on the present marking of the net. The

marking of a Petri net is contained in a vector of dimension n, where n is the

number of places and each value of the vector correspond to the number of

tokens in the corresponding place. When there is a token in each of the input

places of a transition, that transition is enabled to fire. If the weights on each

of arcs between places and transitions are equal to one, then the transition fires

by removing a token from each of its input places and by placing a token in

each of its output places [14].

Figure 1 shows an Ordinary Petri net example. The tokens, places, and tran­

sitions correspond to the various elements found in manufacturing systems.

Places usually represent resources (e.g., machine, part, and data). A token in

a place indicates that the resource is available; if no token, that resource is

unavailable. A place can also be used to imply that a logical condition holds.

Transitions are generally used to represent the initiation or termination of an

event.

2. Marked and safe Petri nets

A Petri net containing a marking /i is a marked Petri net, defined by M =

(P,T,I,0,^). Marking ^ of a Petri net PN is a function from set P to a set of

non-negative integers N, /z: P —> N, where fi sets tokens to every place, =

/i(Pj G N indicates the number of tokens in place juj). We denote a Marked

Petri net (=M) by (PN, /i). We generally associated an initial marking fiQ

with a given M.

An important property of a Petri net model is safeness. A place in a Petri net

www.manaraa.com

148

• J ROBOT IS IDLE

©• o
CONVEYOR IS AVAILABLE

ROBOT IS BUSY

(a) Petri net example

ROBOT IS IDLE

PROCESS TIME A

CONVEYOR IS AVAILABLE TRANSITION ll

(b) Timed Petri net example

Figure 1: Ordinary Petri net example

www.manaraa.com

149

model is safe if the number of tokens in that place never exceeds one. A Petri

net model is safe if all places in the Petri net model are safe.

In a safe Petri net model, each transition is generally used to represent the

initiation or termination of a machine's action, sequence control specifications,

and exclusion control of several machine actions. Also, the execution sequence

of the machine's actions can be defined as a Petri net model structure, and

sequential and concurrent processes of the sequence can be realized as token

movements. However, this description needs many places and transitions to

describe more complicated control specifications, which include many machine

actions. A place in a Petri net model can represent whether the recource is avail­

able or not, or the condition is true or false. Similarly, a transition represents

only one status corresponding to the token firing, while machine actions usu­

ally have plural statuses depending on the results of their operation. To avoid

this problem, the Petri nets model includes Control Petri net (CPN) [15,16]

for describing control specifications for the tool- changing procedure and the

machining job in a flexible manufacturing environment.

3. Control Petri net

Control Petri net (CPN) models are introduced based on initial works [15-18]

as defined by the tuples CPN = (P,T,I,0, S, cp, rj, 0, t, U,V,M), where U, V

(system status functions) represent execution status at places and transitions,

and S, ip, T], 6, i9, and i (input-output process functions) represent process

status. The system status functions allow supervision of the execution status

and management of the transition and place statuses, and input-output process

www.manaraa.com

150

functions are used to allow an operator direct control of token movement in the

system. This is an example of modeling enhancements quickly limiting the

decision and analysis attributes of Petri net models. In order to define a cor­

responding place and transition in a CPN and the controllable and observable

process in a FMS, several functions are needed as follows.

• Definitions

Let C be a set of control signals (cj) and 0 be a set of observable signals

(o^j); similarly let CH be a set of checking signals (c/ij) and J be a set of

judgment signals (j^). Input-output process functions S: T C ip: T —>•

O 0: P —> CH i9:P—+J7/:T—>Ot:P—>J are defined as follows:

= ci,{cieC,tieT) (15)

viH) ~ "ill"12' • • •'^ini ^ ^ (16)

i{ti) ~ ^ij 1 i^ij) ^ ^ ' ^)
(17)

0{Pi) = c/ij,(c/ij e CH,Pi e P) (18)

~ izl)ii2' • • • liimi ^ ̂iPi ^ (19)

i-iPi) — 3ij^ Uij S ^ P) (20)

• Input process function

When a token enters into a transition a control signal q defined by S(tj)

triggers a machining action. Then the token waits to fire in a transition

until one of the input signals defined by ^{t^) is shown for completion

of a machining action. Input signal o^j defined by 7/(fj) is used for firing

www.manaraa.com

151

a transition. After detecting input signal ojj, the transition can fire and

the token moves to its output places.

• Output process function

The checking signal is defined by 6{p{) that corresponds to plural

statuses on the basis of results of the machining actions in output places.

By using the checking signal ch^ , the checking operation is started. Also

the token waits to fire in a place until one of the input judgment signals

shows completion of a checking action like the input process function.

The signals jj^j are defined by that corresponds to its completion of

a judgment, including quality specifications. Input signal j^j, defined by

is used for firing a place. After detecting an input signal jj^j, a place

can fire and the token move to its output transitions.

• Process status functions

In order to define the execution status at a transition and a place, and in

order to manage the transition and place the open and close statuses and

the process status functions [15] The parameters U:P E L(L =0,1, ..., m),

V:P G N(N =0,1) are introduced as follows:

m)
in action associated with is executing now

out action eissociated with t: is completed with return code o

U{Pi) =
in checking associated with (pj) is executing now

out checking associated with (p^) is completed
(22)

www.manaraa.com

152

V{ti) =
close is closed

open is opened
(23)

•
close is closed

open Pi is opened
(24)

When an output signal q defined by 6{ti) has been put out in the transi­

tion, U(t^) is set at in. When one of the input signals Ojj defined by

is detected, U(ij) is set at the value of out. If an input signal ojj defined

by has not been detected, the value of is set at 0; otherwise,

V(ij) is set at open. Similarly, after the token in transition is moved into

its output places, if an output signal ch^ defined by <5(pj) has been checked,

then U(p^) is set at in, otherwise U(p^) is set at out. If an output signal

jl defined by ij has not yet been detected, the value of V(Z^) is set at 0;

otherwise, V(fj) is set at open.

By introducing these functions, execution statues or transition operation

modes can be supervised and controlled at a place and transition. In this

paper, places and transitions are called CPN-transitions and CPN- places

(represented by the fat box and the fat circle) since the process input-

output functions and process status functions can be defined at places

and transitions.

• The token firing rule in CPN-transitions and CPN-places

A token in all input CPN-places p^ of the transition 6 T can be enabled

at each marking M(pj)=l, if and only if.

www.manaraa.com

153

V{pj^) = open, and

U{pi) = out

(25)

A token in CPN-transition G T can be enabled if and only if,

V{t^) = open, and

U{t^) = out

(26)

• Other functions

We have more complicated sequence control specifications for the machin­

ing processes such as conditional branches based on the result of a ma­

chining action and timing control. A CPN place can have several output

transitions and the output transition to be fired is selected according to

the result of machining actions. In addition, a time value can be assigned

to the token and can be used to evaluate time factors such as production

time and rate.

Idustrial Application

Flexible Manufacturing Cell An FMC that has two AGVs and a milling

machine (DM4400) is shown in Figure 2. The AGVs are working to carry parts to

and from stations. The milling machine (DM4400) is a sophisticated, state-of-the-

art electronic and mechanical CNC machine. The DM4400 systems can be logically

broken down into the following subsystems.

www.manaraa.com

154

• Control module

The control module, as the brains of the system, provides the interface to the

machine operator and orchestrates the operation of the system.

The system controller provides program control and machine status display and

performs all the math calculations required by the rest of the system.

The control module panel and its control module board provide the machine

operator with manual spindle control and federate over ride.

• Axes subsystem

The axes subsystem provides the actual X, Y, and Z axes table movement under

command by the controller.

• Spindle subsystem

The spindle subsystem, consisting of spindle controller board, spindle servo-

module, DC servo motor, and spindle Hall Effect board, controls the operation

of the DC spindle motor under command from the controller.

• Automated tool changer (ATC) subsystem

The ATC subsystem provides automatic tool changing under program control.

Petri net model Figure 2 shows an FMC that has two AGVs and a milling

machine with automatic tool changer. In this cell, if a batch of jobs have arrived

on the AGVs at a certain moment, an optimal job sequence can be founded from

the heuristic approach as described in Section 3. The cutting, milling, and drilling

processes that require a number of tool changes are performed by the milling machine.

www.manaraa.com

155

Ztxes fubsyttem

Spindal lubfyitein

Automitic Tool Changer

AOVl

OD B a
DO o o g
00 o o o
00000

Tool Slots

and tools

Control Module

Y axes subsystan

X axes subsystem

Z axes subsyslcm

Milling Machine (DM 4400)

Figure 2: Flexible Manufacturing Cell

The entire processes for the optimal job sequence, the tool changing, and ma­

chining of the milling machine can be modeled by Ordinary, Safe and Control Petri

nets. More specifically, a Safe Petri net is used to model the general approach for

local optimal job sequences based on the heuristic approach. In this model, a sin­

gle token represents a batch of jobs in place RQl. From the machining procedure.

Ordinary and Control Petri nets are used to model the tool-changing procedure and

the machining process of the milling machine. In this model, a token in place TJ

represents an individual job and a number is assigned to the token with 1 being the

first order and n being the last order based on the job sequence. Therefore, the token

in place TJ can be enabled to fire with respect to the number (1,2, ..., n) when the

milling machine is idle.

Referring to Fig. 3, the Petri net model has a list of the places and transitions

(including CPN-transition and CPN-place) along with their procedures for a optimal

job sequence and tool changing procedure and the sequence control specifications for

www.manaraa.com

156

tooling processes cis follows.

• Transitions

AR: Can fire when a batch of jobs has been carried by AG VI

JTM: Set up the job and tool matrix A and choose a reference tool to be

placed in slot #1 on the magazine

CONl: Can fire when a fixed subsequence for jobs requires more than C tools

as described in Section 3.1

CON2; Can fire when a batch of jobs does not have jobs requiring more than

C tools

SOJC: Can fire when a subset of jobs F(i) is checked as described in Section

3.2

SEH &: GF: Can fire when the shortest edge heuristic or greedy feasible is

used

NNH: Can fire when the nearest neighbor heuristic with all possible starting

nodes is used

FIH: Can fire when the farthest insertion heuristic with all possible starting

nodes is used

BBH: Can fire when branch and bound heuristic is used

NNB: Can fire when the NN block minimization, a nearest neighbor with all

possible starting nodes, is used

FIB: Can fire when FI block minimization, a farthest insertion with all possible

starting nodes is used

www.manaraa.com

157

GH; Can fire when the Greedy heuristic is used

KTNSC: Can fire when there is a new job schedule that may produce a smaller

number of tool changes than the current best job schedule, using KTNS policy

TC: Can fire when tool changes have been finished

CPNT: When a token enters into a transition CPNT, a control signal cj defined

by 8{CPNTi) triggers a tooling action. Then the token waits to fire until one of

the input signals Oj^j defined by (p{CPNTi) is shown for completion of a tooling

action. Input signal o^j defined by r]{CPNTi) is used for firing the transition.

After detecting input signal Ojj, the transition can fire and the token moves

to place CPNP. In addition, using process status functions and the firing rule

as described in Section 4.1, the operator can supervise execution statues or

transition operation modes at CPNT.

DP: Can fire when a batch of jobs has been finished cutting, milling, and

drilling.

• Places

AGVl: AGVl is available or not

RQl: Request of a batch of jobs for tooling

RQ2: Enable to find jobs requiring more than C tools

SOJ: Enable to find subset of jobs F(i), being sets of jobs that require only a

subset of the tools required by job i

SLP: Request to find a shortest length path of the job sequence

www.manaraa.com

158

KTNS: Enable to find a job schedule that may produce a smaller number of

tool changes than the current best job schedule using KTNS policy

TJ; Enable machining processes according to the job schedule that allows the

minimum number of tool changes. The token can moved when a Soonest job

based on the optimal job sequence is available.

CPNP: Using the checking signal ch^j defined by 6{CPNPi) that corresponds

to plural statuses based on results of the machining processes, the operator

may start the checking operation. Also the token waits to fire until one of the

input judgment signals completes a checking action like the input process

function. The signals are defined by ^{CPNPj) that corresponds to its com­

pletion of a judgment, including quality specifications. Input signal defined

by t{CPNP^) is used for firing a place. After detecting input signal CPNP

can fire and the token moves to its output transitions. In addition, using pro­

cess status functions and firing rule as described in Section 4.1, the operator

can supervise execution statues or transition operation modes at a CPNP.

MM: Milling machine is available or not

TS: Tools are available in storage

AGV2: AGV2 is available or not

www.manaraa.com

159

J RQl A G V l

STEP 1 C0N2

STEP 2

STEP 3
KTNS

KTNSC STEP 4

CPNT

CPNP

GENERAL

PROCEDURE
SEH&GF

MACHINING

PROCEDURE

AGV2

Figure 3: Petri nets model

www.manaraa.com

160

CONCLUSION

In this paper, we examined the FMS environments including several milling

machines and found two constraints that had not been considered by previous studies.

We then developed a heuristic approach for finding a solution that is locally optimized

with respect to job sequencing and minimizing tool changes.

In addition, we extended the petri net model for describing sequence control

specifications and experimentally applied to a FMC to show the flexibility gained by

using the model. Finally, we showed that the Petri net model for the local optimal

job sequence based on the heuristic approach, and for the tool changing procedure

and the tooling job of the milling machine. Using the eloquent representation of the

Petri net mode, the FMC can be easily supervised and controlled, and the hours to

develop the control program can be significantly reduced.

www.manaraa.com

161

BIBLIOGRAPHY

[1] Stecke, Kathryn E., and Browne, J., "Variation in Flexible Manufacturing Sys­
tems According to the Relevant of Automated Materials Handling", Material
Flow 2, 179-185,1985

Mortimer, John., The FMS Report, IFS Publ, Ltd., Kempston, Bedford, U.K.

Kiran, A.S., and Krason, R.J., "Automating Tooling in a Flexible Manufacturing
System", Industrial Engineering, 52-57, April 1988.

Dupont-Gatelmand, C., "A survey of Flexible Manufacturing Systems", Journal
of Manufacturing Systems 1(1), 1-16, 1982.

Stecke, Kathryn E., "Formulation and Solution of Nonlinear Integer Planning
Problems for FMS", Management Science 29, 273-288, 1983.

Stecke, Kathryn E., and Talbot, F., "Heuristic Loading Algorithms for Flexi­
ble Manufacturing Systems", Proceeding of the 7th Internalional Confcrcnct on
Production Research Windsor, Ontario, 1983.

Tang, Christopher S., and Denardo, E.V., "Models Arising from a Flexible Man­
ufacturing Machine, Part I : Minimization of the Number of Tool Switches",
Operations Researchs 36(5), 767-777,1988.

Tang, Christopher S., and Denardo, E.V., "Models Arising from a Flexible
Manufacturing Machine, Part II ; Minimization of the Number of Switching
Instants", Operations Researchs Z6{b), 778-784,1988.

Roger, C., "La gestion des outils sur machines a commande numerique", Mem-
oire DEA de Recherche Operationnelle, Universite Joseph Fourier, Grenoble,
1990.

Mattson, R., Gecsei, J., Slutz, D.R., and Traiger, I.L., " Evaluation Techniques
for Storage Hierarchies", IBM Systems Journal 9, 78-117, 1970.

Daskin, Mark., Jones, Philip C., and Lowe, Timothy J., "Rationalizing Tool
Selection in a Flexible Manufacturing System for Sheet-Metal Products", Oper­
ations Researchs 38, 1104-1115, 1990.

Bard, Jonathan F., "A Heuristic for Minimizing the Number of Tool Switches
on a Flexible Machine", HE TRansactions 20, 3820391, 1988.

DM4000/4400 Maintenance and Service Manual, Dyna Mechtronics, Inc, 1989.

www.manaraa.com

162

Choi, B.W., and Kuo, W., "Petri Net Extensions for Modeling and Validating
Manufacturing Systems", Int. J. Prod. Res., (accepted for the publication by).

Murata, Tomohiro., Komoda, Norihisa., Matsumoto, Kuniaki., and Haruna,
Koichi., " A Petri Net -Based Controller for Flexible and Maintainable Sequence
Control and its Applications in Factory Automation", IEEE Transactions on In­
dustrial Electronics, 33(1), Feb 1986.

Masuda, R., and Hasegawa, K., "Mark flow graph and its application to complex
sequential control system", Proc. of 13th Hawaii Int. Conf. on System Science,
194-203, Jan 1980.

Silva, M., and Velilla, S., "Programmable logic controller and Petri nets: A
comparative study", IFAC Software for Computer Control, 83-88, 1982.

Valette, R.et al., "Putting Petri nets to work for controlling flexible manufac­
turing systems", Proc. of ISC AS' 85, 929-932, June 1985.

Roberts, F.S., Applied Combinatorics, Prentice-Hall, Englewood Cliffs, New Jer­
sey, 1984.

Liu, C.L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York,
1968.

Nemhauser, G.L., and Wolsey, L.A., Integer and Combinatorial Optimization,
John Wiley and Sons, New York, 1988.

Golden, B.L., and Stewart, W.R., Empirical Analysis of Heuristics. In the Trav­
eling Salesman Problem, E.L. Lawler et al., John Wiley and Sons, Chichester,
207-249, 1985.

Johnson, D.S., and Papadimitriou, C.H., Computational Complexity. In the
Traveling Salesman Problem, E.L. Lawler et al., John Wiley and Sons, Chich­
ester, 37-85, 1985.

Volgenant, T., and Jonker, R., "A Branch snd Bound Algorithm for the Sym­
metric Traveling Salesman Problem based on the 1-tree Relaxation", European
Journal of Operational Research 9, 83-89, 1982.

Kou, L.T., "Polynomial Complete Consecutive Information Retrival Problems",
SI AM Journal on Computing 6, 67-75, 1977.

www.manaraa.com

163

GENERAL SUMMARY AND FUTURE STUDY

This dissertation introduces the fundamental ideas and constructs of Petri net

models, extends these models based on the context of a versatile manufacturing

system, and applies extended Petri nets models to several manufacturing systems

such an assembly cell, an Automated Palletized Conveyor System, and a tooling

machine to show increased modeling power and efficient analysis methods.

The main contributions of the this dissertation are as follow: (1) present some

studies that emphasize Petri nets theories and applications as extended research fields

that provide suitable platforms in modeling, controlling, validating, and evaluating

concurrent systems, information systems, and a versatile dynamic system and and

manufacturing systems (2) suggest some extensions that help make Petri nets useful

for modeling and analyzing discrete event systems and manufacturing systems models

(3) present validation methods for suggested models.

(4) apply extended Petri nets models to several manufacturing systems such an

assembly cell, an Automated Palletized Conveyor System, and a tooling machine to

show increased modeling power and eflScient analysis methods.

(5) use results of a performance analysis from a deterministic and stochastic

model to reorganize and re-evaluate a manufacturing system in order to increase its

flexibility.

www.manaraa.com

164

However, our works have still partial representation of the Petri net theories and

applications with respect to complex flexible manufacturing systems, for example

deadlock. We did not access many application areas such as controller, conveyor

system, and Robots.

www.manaraa.com

165

APPENDIX A: MODIFIED PETRI NET MODEL WRITTEN IN C

Based on our extended Petri net models, we have developed a modified determin­

istic algorithm written in C language, to analyze a versertile manufacturing system.

The approach is based on the Petri net graph structure, firing rules, and the state

of the Petri net model with process time, resource availability, multiple products,

capacity, priority, and failure rate. We manually edit an input file in order to model

and analyze the assembly system. By changing different variables, we create output

files are generated and include the following informations:

• Incident matrix characterizing structure of the Petri net model

• State of the Petri net model. From the state variable, we know dynamic changes

of the assembly system at consecutive time steps.

• Compute the maximum flowtime of the assembly system based on the directed

circuits of the Petri net model. From the incident matrix, it is possible to

determine all the directed circuits of the net[24].

• Compute transition firing schedules. We determine the earliest instance of time

when system reached steady state and process schedules by changing the control

variables in the Petri net model (e.g. resources, time,etc.), and executing the

model for different system configurations.

www.manaraa.com

166

The analysis can be divided into four main parts based on the several control

variables. These are structure of the assembly system, processing time, resources,

inventory, priority, and failure rate.

(1)the structure of the manufacturing system resources is fixed, but processing

time is varied.

(2)the structure of the manufacturing system and processing time are fixed, but

system resources are varied.

(3)the structure of the manufacturing system and processing time are fixed, but

resources and inventory are varied.

(4) the structure of the manufacturing system is changed, but other variables

are fixed.

This simulates a time Petri network composed of places and transitions.

Transitions can take time while places do not taJce time. Note the

following input file:

++

#Transitions #Places #Outputs

Time Failure-rate #input-places i-place-0 i-place-1 ..

#output-places o-place-0 ...

Time Failure-rate #input-places i-place-0 i-place-1 ..

#output-places o-place-0 ...

#tokens-in-place-0 #tokens-in-place-l ...

Destination-place

Capacity

++

#transitions specifies the number of treinsitions.

#places specifies the number of places.

www.manaraa.com

167

#outputs denotes the desired number of outputs at the

detination place.

Destination-place indicates which place to be act as

a destination place.

Capacity represents initial number of outputs held in the

destination place.

You can maoiually edit a input file with your favorite editor or

you cein execute "raknet" to create new input file.

The included file 'phil.dat' is the network for the dining

philosophers which has 10 transitions Eind 15 places. Note that

place numbers and transition numbers start at zero. Consider

the following Petri net:

I I

I ** |.

I I

I

I *

>

>

I I
- > l

I I

I I

Here is the input file for this net:

1 3 10

1.0 0.05 2 0 112

2 10
2
0

www.manaraa.com

168

Now try: petri < thisfile

Command Line Options

"petri" can be invoked with several options.

*/, petri [-acip] C-s seed] < input-file

-c : to print cycles

-i : to print incident matrix

-p ; to print transition firing table

-a : to print all of the above

-s seed

NOTE!!!

Before you compile the prograjns, make sure that you specify the target

operating system by setting its value to 1 in "global.h".

#ifndef GLOBAL.H

#define GLOBAL.H

#include <stdio.h>

#include <math.h>

#include "proto.h"

* Set The Type of Target Operating System to 1 *

** Jit******************** ******************* ************/

#define BSD 1

#define SYSV 0

#define MSDOS 0

#if SYSV I I MSDOS

#define index strchr

#endif

#if BSD I I SYSV

#define huge

#endif

www.manaraa.com

169

/ l i e * /

#define TRUE 1

#define FALSE 0

#define NIL 0

#define BUSY 1

#define FREE 0

#define BEGINFIRE

#define ENDFIRE 2

#define YES 1

#define MAX.TRANS 100

#define MAX.PLACES 200

#define MAX.BRANCH 20

#define MAX.RANDOM.ARRAY 500

#define MAX_HEAP_SIZE 10000

extern int n.treinsitions, n_places;

extern int Matrix[MAX.PLACES][MAX_TRANS];

extern float trEais_time[MAX_TRANS], trans_failCMAX_TRANS];

#endif /* GLOBAL.H */

#ifdef __STDC__

define P(s) s

#else

define P(s) ()

#endif

/* petri.c */

int main P((int argc , char *argv []));

void Init_petrinet P((void));

void read_net P((void));

void print.header P((void));

void print_incident_matrix P((void));

void check_transition P((int event , int transition_number));

void report_res P((void));

void random_array P((int max , int array []));

www.manaraa.com

170

void schedule P((int event , float inter_time , int token));

void next_event P((int *event_ptr , int *token_ptr));

void heap_insert P((ITEM item));

void heap.remove P((ITEM *item_addr));

void heap_swap P((ITEM *iteml , ITEM *item2));

float time P((void));

int stream P((int n));

double ranf P((void));

int random P((int i , int n));

void create_list P((LIST *list_ptr));

int empty_list P((LIST *list_ptr));

void insert_list P((int treins , float time));

/* cycle.c */

void detect_cycle P((void));

void init.stacks P((void));

void find_cycle P((int trans));

void update P((int trans));

void place_cycle P((void));

int is_dup P((int *cycle_p , int length));

int is_same P((int *cycle_p , int who));

void permute P((int *cycle_p , int length , int index));

void print_cycles P((void));

/* getopt.c */

int getopt P((int argc , char **argv , char *opts));

#undef P

#include "global.h"

#define MAX_CYCLE 100

#define MAX_SIZE 200

#define IS_TRANS(x) (((x) < n_transitions) ? 1 : 0)

struct p_cycles {

www.manaraa.com

171

int count;

struct n_cycles {

int *nodeCMAX_CYCLE];

int length[HAX.CYCLE];

float times[MAX_CYCLE];

float success[MAX_CYCLE];

} cycle;

} cycles;

struct stack {

int iteinCMAX_SIZE];

int top;

} queue, path, counter;

int Mark[MAX_PLACES + MAX.TRANS];

#define push(stack,x) {stack.item [stack.top++] = (x);}

#define pop(stack) {stack.top—;>

#define stop(stack) (stack.item[stack.top-l])

/* Find out all cycles in the petri-net */

void

detect_cycle()

{
int i, j;

cycles.count = 0;

for (i = 0; i < n_transitions; i++) {

for (j = 0; j < (n_transitions + n_places); j++)

MarkCj] = 0;

init_stacks();

push(queue, i) ;

find_cycle(i);

}
printf("\n\n");

}

/* Initialize various stacks */

void

init_stacks()

www.manaraa.com

172

{
queue.top = path.top = counter.top = 0;

}

/* Find cycles starting at a given transition */

void

find_cycle(trans)

int trans;

{
int i, j, k, branch, temp;

while (queue.top != 0) {

push(path, stop(queue));

pop(queue);

if (Mark[stop(path)])

update(trans);

else {

Mark[stop(path)] = 1;

if (IS.TRANS(stop(path))) {

branch = 0;

for (j = 0; j < n_places; j++)

if (MatrixCj][stop(path)] == 1) {

push(queue, j + n_transitions);

branch++;

}
push(counter, branch);

} else {

branch = 0;

for (i = 0; i < n_transitions; i++)

if (Matrix[stop(path) - n_transitions][i] == -1) {

push(queue, i);

branch++;

}
if (branch != 0) {

push(counter, branch);

} else {

update(-1);

}
}
} /* else */

www.manaraa.com

173

} /* while */

}

void

update(trans)

int trans;

{
int i = 0, temp;

if (stop(path) == trans) {

place_cycle();

pop(path);

} else {

pop(path);

>

while (counter.top != 0) {

temp = stop(counter);

if (—temp == 0) {

Mark[stop(path)] = 0;

pop(path);

pop(counter);

} else {

pop(counter);

push(counter, temp);

breeik;

}
}
>

void

place_cycle()

{
int i, j, k;

int length;

int *t_cycle;

length = path.top - 1;

t_cycle = (int *) malloc(sizeof(int) * length);

i = 0;

while (i < path.top - 1) {

www.manaraa.com

174

t_cycle[i] = path.item[i];

i++;

}
if (!is_dup(t_cycle, length)) {

cycles.count++;

cycles.cycle.length[cycles.count - 1] = length;

i = 0;

while (i < path.top - 1) {

t_cycle[i] = path.item[i];

i++;

}
cycles.cycle.node[cycles.count - 1] = t_cycle;

cycles.cycle.times[cycles.count - 1] =0;

cycles.cycle.success[cycles.count - 1] = 1;

for (k = 0; k < cycles.cycle.length[cycles,count - 1]; k++) {

cycles.cycle.times[cycles.count -!]+=(

IS_TRANS(cycles.cycle.node [cycles.count - 1][k])

7

trains.tirae [cycles, cycle, node [cycles, count - l][k]]

: 0) ;
cycles.cycle.success[cycles.count -!]•=(

IS_TRANS(cycles.cycle.node[cycles.count - 1] [k])

7

1 - trans_fail [cycles.cycle.node[cycles.count - l][k]]

: 1) ;
}
>
>

int

is_dup(cycle_p, length)

int *cycle_p, length;

{
int i, j, index;

int first_node;

int duplicated = 0;

for (i = 0; i < cycles.count; i++) {

if (length != cycles.cycle.length[i])

continue;

www.manaraa.com

175

first_node = cycles.cycle.node[i][0];

index = 0;

for (j = 0; j < cycles.cycle.length[i]; j++) {

if (first_node == cycle_p[j])

break;

index++;

}
if (index == length)

continue;

permute(cycle_p, length, index);

if (is_same(cycle_p, i)) {

duplicated = 1;

breeik;

}
}
return (duplicated);

}

int

is_sarae(cycle_p, who)

int *cycle_p, who;

{
int i;

for (i = 0; i < cycles.cycle.length[who]; i++) {

if (cycle_p[i] != cycles.cycle.node[who][i])

return (0);

}
return (1);

>

void

permute(cycle.p, length, index)

int *cycle_p, length, index;

{
int i, j, temp;

for (j =0; j < index; j++) {

temp = cycle_p[0];

for (i = 0; i < length - 1; i++) {

cycle_p[i] = cycle_p[i + 1];

}

www.manaraa.com

176

cycle_p[length - 1] = temp;

>
}

void

print_cycles()

{
register int i, j;

int l_cycles [20], l_count = 1;

int longest_cycle = 0;

float temp;

printf("« Cycles for the Simulated Petri-Net >>\n");

printf (" \n");

printf("Cycle : Length : Times : Success I Treinsition-Place Sequences\n");

printf (" \n") ;

l_cycles[0] = 0;

for (j = 0; j < cycles.count; j++) {

printf("y,5d : '/,6d : */,5.1f : '/,6.5f : j, cycles, cycle, length [j] ,

cycles.cycle.times[j], cycles.cycle.success [j]);

temp = cycles.cycle.times[j] - cycles.cycle.times[longest_cycle];

if (temp > 0) {

l_cycles[0] = longest_cycle = j;

l.count = 1;

} else if (temp < 0);

else {

if (j != 0)

l_cycles[l_count++] = j;

}
for (i = 0; i < cycles.cycle.length[j]; i++) {

printf(IS_TRANS(cycles.cycle.node[j][i])

? " T'/,d " : " P'/.d

IS.TRANS(cycles.cycle.node[j][i])

? cycles.cycle.node[j][i] :

cycles, cycle, node [j] [i] - n_treinsitions);

}
printf("\n");

}
printf (" \n");

printf ("There are '/,d cycles found in the petri-net .\n", cycles, count);

www.manaraa.com

177

printf("Longest Cycles (Critical Paths) ==>> ");

for (i = 0; i < l_count - 1; i++)

printf ("'/,2d, l_cycles [i]) ;

printf ("'/,2d\n", l_cycles [l_count - 1]);

printf (" \n");

}

#include "global.h"

#ifndef NULL

#define NULL 0

#endif

#ifndef EOF

#define EOF (-1)

#endif

#define ERR(s, c) if(opterr){\

extern write();\

char errbuf[2];\

errbuf[0] = c; errbuf[1] = '\n';\

(void) write(2, argv[0], (unsigned)strlen(argv[O]));\

(void) write(2, s, (unsigned)strlen(s));\

(void) write(2, errbuf, 2);}

extern int strcmpO;

extern char *index();

int opterr = 1;

int optind = 1;

int optopt;

char *optarg;

int

getopt(argc, argv, opts)

int argc;

char * * argv, * opt s;
{

static int sp = 1;

www.manaraa.com

178

register int c;

register char *cp;

if (sp == 1)

if (optind >= argc I I

argvCoptind][0] \= || argv[optind][1] == '\0')

return (EOF);

else if (strcmpCargv[optind], "—") == NULL) {

optind++;

return (EOF);

}
optopt = c = argv[optind][sp];

if (c ' II (cp = index(opts, c)) == NULL) {

ERR(": illegal option — c);

if (argv[optind][++sp] == '\0*) {

optind++;

sp = 1;

}
return ('?');

}
if (*++cp == ':') i

if (argv[optind][sp +1] != '\0')

optarg = &argv[optind++] [sp + 1];

else if (++optind >= argc) {

ERR(": option requires an argument — c);

sp = 1;

return ('?'),*

} else

optarg = argv[optind++];

sp = 1;

} else {

if (argv[optind][++sp] == '\0') {

sp = 1;

optind++;

}
optarg = NULL;

}
return (c);

}

www.manaraa.com

179

/](c !(c :((:)(ifc it: ̂ ^ ^ ^ ^ ^ ^ ̂ ̂ ^ ^ ̂ ̂ ^ ̂ ̂ ̂
GENERAL PURPOSE TIMED PETRI-NET SIMULATOR

This program simulates Timed-Petri Net. The scheduling

and heap management routines are based on SIMPACK

petri-net simulator developed by Paul A. Fishwick.

#include "global.h"

/* Incident Matrix */

int Matrix[MAX_PLACES][MAX.TRANS];

/*
* t_in[i] [0] and t_out[j][0] contains # of input eind # of output places,

* respectively. t_in[i][k] (where k != 0) has input place number.

* t_out[j][l] (where 1 != 0) has output place number.

*/
int t_inCMAX_TRANS][MAX.BRANCH] , t.out[MAX.TRANS] [MAX.BRANCH];

int tr_status[MAX_TRANS]; /* transition status */

float trans_timeCMAX_TRANS] ; /* treinsition time */

float trans_fail[MAX_TRANS]; /* failure rate */

int p[MAX.PLACES];

int n_transitions; /* # transitions */

int n_places; /* # places */

int capacity; /* Initial # outputs placed at destination

* place */

int outputs; /* Desired # of total outputs at dest. place */

int threshold; /**/

int dest_place; /* Destination place number */

int dest_count; /* Current # of outputs produced */

int finish; /* Flag for prograim termination */

float start. .time =0.0; /* initial simulation time */

float current.time = 0.0, last_event_time;

typedef struct node {

float time;

www.manaraa.com

180

struct node *next;

NODE;

{
}
typedef struct

NODE

}

LIST

•front, *rear;

LIST;

tr£ais_listCMAX_TRANS]; /* Transition firing time table */

typedef struct {

float time;

event;

token;

ITEM;

int

int

}

int

int

int

ITEM huge heap[MAX_HEAP_SIZE], an_item;

heap_count;

array[MAX_RANDQM_ARRAY];

events;

/* Declarations for random distribution seunpling */

#define then

#define A 16807L /* multiplier (7**5) for 'ranf */

#define M 2147483647L /* modulus (2**31-1) for 'ranf */

static long In[16] = {OL, /* seeds for streams 1 thru 15 */

1973272912L, 747177549L, 20464843L, 640830765L, 1098742207L,

78126602L, 84743774L, 831312807L, 124667236L, 1172177002L,

1124933064L, 1223960546L, 1878892440L, 1449793615L, 553303732L};

static int strm = 1; /* index of current streeun */

static int rn_stream = 1;

#include "proto.h"

extern char *optarg;

extern int optind;

int aflag, cflag, iflag, pflag;

main(argc, argv)

int argc;

www.manaraa.com

181

char *argv [] ;

{
int event, treinsition.number;

int c;

register int i;

static char options[] = "acips:t:";

/* process commeind line arguments */

while ((c = getopt(argc, argv, options)) != EOF) {

switch (c) {

case 'a':

aflag++;

break;

case 'c':

cflag++;

break;

case 'i':

iflag++;

break;

case 'p';

pflag++;

break;

case 't':

current_time = atof(optarg);

start_time = current_tirae;

breads;

case 's':

rn_streaun = atoi (optarg);

if (rn_stream < 0 I I rn_streaLra > 15) {

fprintf(stderr, "seed must be in the range 0 <= seed <=15\n");

exit(l);

}
break;

case :

fprintf(stderr,

fprintf(stderr,

fprintf(stderr,

fprintf(stderr,

fprintf(stderr,

fprintf(stderr,

Invalid option\n");

-c : to print cycles\n");

-i : to print incident matrix\n");

-p : to print treinsition firing table\n");

-a : to print all of the above\n");

-t start_time\n");

www.manaraa.com

182

fprintf(stderr, " -s seed\n");

exit(l);

}
}
p r i n t f ;

printfC* WELCOME TO TIMED PETRI NET SIMULATOR *\n");

p r i n t f ;

Init_petrinet(); /* Initialize petri-net simulator */

read_net(); /* Read network configuration and parameters */

printfC"* Parameters Specified:\n");

printfC" Number of Transitions : y,3d\n", n_transitions);

printfC" Number of Places : '/,3d\n", n_places);

printfC" Number of Outputs : */,3d\n", outputs);

printfC" Capacity : '/,3d\n", capacity);

detect.cycleC); /* detect cycles in the petri-net */

if Caflag I I pflag)

print.headerC);

for Ci = 0; i < n.treuisitions; i++) {

scheduleCBEGINFIRE, 0.0, i) ;

events++;

}
while Cfinish != YES && events > 0) {

/* tadce one event from the event list and cause it to occur */

next_eventC&event, &transition_nuraber);

events—;

check_transitionCevent, transition_number);
}
report.resC);
}

/* initialize data structures for simulation */

void

lnit_petrinet C)

heap_count = 0;

last_event_time = current_time;

/* set reaidom number streaim */

www.manaraa.com

183

rn.stream = stream(rn.stream);

rn_stream++;

if (rn_stream > 15)

rn_stream = 1;

>

void

read_net()

•C
int i, j, number.inputs, number.outputs;

/* Read #trainsitions, #places, #outputs */

scanfC'/d '/,d */,d", &n_traJisitions, &n_places, ftoutputs) ;

/*
* Read treinsition information: time-delay failure-rate ttinputs il

* i2 i3 #outputs ol o2 o3 ...

*/
for (i = 0; i < n_tremsitions; i++) {

scanf("'/,f '/,f y.d", &trans_timeCi] , &trans_fail[i] , &t_inCi] [0]) ;

number.inputs = t_in[i][0];

for (j = 0; j < number.inputs; j++) {

scanf ('"/.d", &t_in[i] [j + 1]);

Matrix[t_in[i] [j + 1]] [i] = -1;

}
sceoif ("'/,d", &t_out [i] [0]) :

number.outputs = t_out[i][0];

for (j = 0; j < number_outputs; j++) {

scanf('"/.d", &t_out[i3[j + 1]);

Matrix [t_out [i] [j + 1]] [i] = 1;

}
}

/* Read place information */

for (i = 0; i < n_places; i++)

scanf ("*/,d", &p[i]);

/* Read detination place and its capacity*/

scanf ("'/,d y.d", &dest_place, ftcapacity) ;
dest_count = capacity;

www.manaraa.com

184

/* Initialize transition time table */

for (i = 0; i < n.transitions; i++)

create_list(&trans_list[i]);

}

/* Print Table Header */

void

print_header()

{
register int i;

printf("« Treinsition Status Table >>\n");

for (i = 0; i < (11 + n.places * 3); i++)

p r i n t f ;

printf("\n");

printf("TIME ") ;

printf("TRS ");

for (i = 0; i < n_places; i++)

printf ("*/,2d i) ;

printf("\n");

for (i = 0; i < (11 + n_places * 3); i++)

printf("-");

printf("\n");

/* print out initial place array */

printf("'/,6.2f timeO);

printf("~: ");

for (i = 0; i < n_places; i++)

printf ("'/,2d pCi]);

printf("\n");
}

void

print_incident_matrix()

register int i, j;

char buf[10];

printf (" \n");

printf("« Incident Matrix for the Simulated Petri-Net >>\n");

printf (" \n\n") ;

www.manaraa.com

185

printfC ");

for (i = 0; i < n_transitions; i++) {

sprintf(buf, "T'/,d", i);

printf ("y,4s", buf) ;

}
printf("\n ");

for (i = 0; i < n_transitions; i++)

printf (" ");

printf("\n");

for (j = 0; j < n_places; j++) {

sprintf(buf, "P'/d", j);

printf("*/,5s:", buf);

for (i = 0; i < n_transitions; i++)

printf ('"/,3d Matrix [j] [i]);

printf("\n");

}
printf("\n\n");

}

void

check_transition(event, transition_nuinber)

/*
* Check a transition for firing. If the transition is not already busy then

* fire it as long as at least one token exists in each input place for that

* transition.

*/
int event, transition.number;

{
int input_places, output_places, i, fire, tokens, number;

switch (event) {

case BEGINFIRE: /* check transition for firing */

input_places = t_in[traaisition_nuraber] [0] ;

fire = TRUE;

for (i = 0; i < input_places; i++) {

tokens = p[t_in[trEuisition_number] [i + i]] ;

fire = fire && (tokens > 0);

}
if ((tr_status[transition_number] == FREE) && fire) {

/* delete one token from each input place */

www.manaraa.com

186

for (i = 0; i < input_places; i++)

pCt„in[transition_number] [i + 1]] -= 1;

tr_status[transition_number] = BUSY;

schedule(ENDFIRE, trans_time[transition_number], transition_number);

events++;

} /* end if */

break;

case ENDFIRE: /* end of transition fire */

tr_status[transition_number] = FREE;

/* add one token to each output place */

input.places = t_in[transition_number][0];

output_places = t_out[transition_number][0];

for (i = 0; i < output_places; i++) {

p[t_out [tremsition.number] [i + 1]] += 1;

if (t_out[transition_number]Ci + 1] == dest_place)

if (++dest_count == outputs)

finish = YES;

}
insert_list(transition_number, timeO);

if (aflag I I pflag) {

/* firing just occurred, print out the 'p'lace array */

printf("*/,6.2f ", timeO);

printf ("'/,2d: ", transition_number);

for (i = 0; i < n_places; i++)

printf ("y.2d pCi]);

printf("\n");

}
/* sweep through all transitions once to schedule new events */

r5indom_array(n_transitions - 1, array);

for (number = 0; number < n_transitions; number++) {

schedule(BEGINFIRE, 0.0, array[number]);

events++;

}
breaik;

} /* end switch */

}

void

report_res()

www.manaraa.com

187

register int i;

NODE *q;

printf ("\n\nTotal number of output at destination place = '/,d\n",

printf("Last event time = ' / ,6 .2f \n", last_event_time) ;
printf ("Production Rate = '/,6. 3f \n\n" , outputs / (last_event_time

printf (" \n");

printf ("« Tremsitions Firing Time Table >>\n");

printf (" \n");

for (i = 0; i < n.transitions; i++) {

printf ("T'/,d : i);

q = trans_list[i].front;

while (q != NIL) {

printf ("'/,6. If", q->time) ;

q = q->next;

}
printf("\n");

}
printf("\n\n");

if (aflag I I iflag)

print_incident_matrix();

if (aflag I I cflag)

print_cycles();

}

void

random_array(max, array)

I*
* tadce the integers between 0 and max euid return a randomly sorted array

* 'newarray' containing these integers

* /
int max, array [] ;

{
int element, i, swap;

/* initialize array to contain to 0..max */

for (i = 0; i <= max; i++)

array[i] = i;

/* rearrange array to yield a random ordering */

for (i = 0; i < max; i++) {

www.manaraa.com

188

element = reindom(0, max - i);

swap = array[element];

array[element] = array[max - i] ;

array[max - i] = swap;

}
>

/* schedule an event */

void

schedule(event, inter_time, token)

int event, token;

float inter_time;

•C

float event_time;

ITEM an_item;

int i;

event_time = current_tirae + inter_time;

an_item.time = event_time;

an_item.event = event;

an_item.token = token;

heap_insert(an_item);

>

/* cause Eoi event to occur */

void

next_event(event_ptr, token_ptr)

int *event_ptr, *token_ptr;

{
ITEM an_item;

heap.remove(&an_item);

current_time = an_item.time;

•event_ptr = an_item.event;

*token_ptr = an_item.token;

last_event_time = timeO;
}

void

heap_insert(item)

www.manaraa.com

189

ITEM

{

int

item;

parent, child;

heap_count++;

heap[heap.count] = item;

if (heap_count > 1) {

child = heap_count;

parent = child / 2;

while ((heap [pairent] .time > heap [child] .time) && (child > 1)) {

heap_swap(ftheap[parent], feheap[child]);

child = parent;

if (child > 1)

parent = child / 2;

} /* end while */

} /* end if */

}

void

heap_remove(item_addr)

ITEM *item_addr;

*item_addr = heap[l];

heap.swap(ftheap[1], ftheap[heap_count]);

heap.count—;

parent = 1;

while (1) {

if (2 * parent > heap_count)

goto exit;

else

child = 2 * parent;

if (child + 1 <= heap_count)

if (heap[child + 1].time < heap[child].time)

child++;

if (heap[parent].time < heap[child].time)

goto exit;

heap_swap(ftheap[parent], ftheap[child]);

parent = child;

int parent, child;

www.manaraa.com

190

} /* end while */

exit: ;

}

void

heap_swap(iteml, item2)

ITEM huge *iteml;

ITEM huge *item2;

-C

ITEM temp;

temp = *iteml;

*iteml = *item2;

*item2 = temp;

}

/* provide the current simulation time */

float

timeO

{

return (current_time);

}

/* select generator stream */

int

stream(n)

int n;

{
/* set streeun for l<=n<=15, return streajn for n=0 */

/* if ((n<0)I I(n>15)) then error(0,"streajn Argument Error");

if (n)

then strm = n;

return (strm);

}

#if BSD I I SYSV

double

ranf()

www.manaraa.com

191

short *p, *q, k;

long Hi, Lo;

/* generate product using double precision simulation (comments */

/* refer to In's lower 16 bits as "L", its upper 16 bits as "H") */

p = (short *) &In[strm];

Hi = »(p) * A; /* 16807*H->Hi */

*(p) = 0;

Lo = In[strm] * A; /• 16807*L->Lo */

p = (short *) &Lo;

Hi += *(p); /* add high-order bits of Lo to Hi */

q = (short *) &Hi; /* low-order bits of Hi->LO */

*(p) = *(q + 1) & 0X7FFF; /* clear sign bit */

k = *(q) « 1;

if (*(q + 1) & 0X8000)

then k++; /* Hi bits 31-45->K */

/* form Z + K [- M] (where Z=Lo): presubtract M to avoid overflow */

Lo -= M;

Lo += k;

if (Lo < 0)

then Lo += M;

InCstrm] = Lo;

return ((double) Lo * 4.656612875E-10); /* Lo x 1/(2**31-1) */

}
#endif

#if MSDOS

double

reaif 0

{

short *p, *q, k;

long Hi, Lo;

/* generate product using double precision simulation (comments */

/* refer to In's lower 16 bits as "L", its upper 16 bits as "H") */

p = (short *) &In[strm];

Hi = *(p + 1) * A; /* 16807*H->Hi */

*(p + 1) = 0;

Lo = In[strm] * A; /* 16807*L->Lo */

p = (short *) &Lo;

Hi += *(p + 1); /* add high-order bits of Lo to Hi */

q = (short *) &Hi; /* low-order bits of Hi->LO */

www.manaraa.com

192

*(p + 1) = *q & 0X7FFF; /* clear sign bit */

k = *(q + 1) « 1;

if (*q & 0X8000)

then k++; /* Hi bits 31-45->K */

/* form Z + K [- M] (where Z=Lo): presubtract M to avoid overflow */

Lo -= M;

Lo += k;

if (Lo < 0)

then Lo += M;

InCstrm] = Lo;

return ((double) Lo * 4.656612875E-10); /* Lo x 1/(2**31-1) */

}
#endif

int

random(i, n)

int i, n;

{
/* 'random' returns an integer equiprobably selected from the */

/* set of integers i, i+1, i+2, . . , n. */

/* if (i>n) then error(O,"random Argument Error: i > n"); */

n -= i;

n = (n + 1.0) * ranfO;

return (i + n);

}

/* Create a list structure */

void

create_list(list_ptr)

LIST *list_ptr;

{
list_ptr->front = NIL;

list_ptr->rear = NIL;

}

/* Is the list empty? */

int

empty_list(list_ptr)

LIST *list_ptr;

{

www.manaraa.com

193

return (list_ptr->front == NIL);

}

/* insert an item to the list */

void

insert_list(trans, time)

int trans;

float time;

{
NODE *p;

p = (NODE *) malloc(sizeof(NODE));

p->time = time;

p->next = NIL;

if (empty_list(&trans_list[trans])) {

trans_list[trans].front = p;

trans_list[trans].rear = p;

} else {

trans_list[trans].rear->next = p;

trans_list[treins] .rear = p;

}
}

#include <stdio.h>

#include <ctype.h>

#include <raath.h>

#define MAX_TRANS 100

#define MAX.PLACES 200

ttdefine MAX.BRANCH 20

mainO

{

char buf[80];

FILE *fp;

int transitions, places, outputs, n_inputs, n.outputs;

float tr£ins_time, fail.rate;

register int i, j;

int data;

www.manaraa.com

194

printf("Enter the name of configuration file ==> ");

gets(buf);

if ((fp = fopen(buf, "w")) == NULL) {

perror(buf);

exit(l);

}
printf ("Number of transitions ? (Max. '/,d) MAX_TRANS);

gets(buf);

tramsitions = atoi(buf);

printf ("Number of places ? (Maix. '/.d) ", MAX_PLACES);

gets(buf);

places = atoi(buf);

printf("Total number of desired outputs ? ");

gets(buf);

outputs = atoi(buf);

fprintf(fp, "'/,d '/,d '/,d\n", transitions, places, outputs);

for (i = 0; i < transitions; i++) {

printf (" < Transition '/,d >\n", i) ;

printf(" Transition time ? ");

gets(buf);

sscanf(buf, "'/.f", &trans_time) ;

fprintf(fp, "'/,f ", trans_time);

printf(" Failure Rate ? ");

gets(buf);

ssceinf(buf, "'/,f", &f ail.rate);

fprintf(fp, "'/,f ", f ail_rate);

printf (" Number of Inputs ? (Max. '/,d) ", MAX_BRANCH);

gets(buf);

n_inputs = atoi(buf);

fprintf(fp, "'/,d n_inputs) ;

printf(" Enter input places numbers ==> ");

for (j = 0; j < n_inputs; j++) {

scanf ("*/,d", ftdata);

fprintf(fp, "'/,d ", data);

}
gets(buf); /* eliminate dummy newline */

printf (" Number of Outputs ? (Max. '/,d) ", MAX_BRANCH);

gets(buf);

n_outputs = atoi(buf);

fprintf(fp, "5Cd n_outputs);

www.manaraa.com

195

printf(" Enter output places numbers ==> ");

for (j = 0; j < n.outputs; j++) {

scanf ("'/,d", ftdata);

fprintf(fp, "y,d data) ;

}
gets(buf); /* eliminate dummy newline */

fprintf(fp, "\n");

}
printf("Enter number of tokens at each placeXn");

for (i = 0; i < places; i++) {

printf (" Place */,d ? i) ;

sccinf("'/,d", ftdata);

fprintf(fp, "*/.d data);

>
fprintf(fp, "\n");

gets(buf); /* eliminate dummy newline */

printf("Enter the destination place number ==> ");

gets(buf);

fprintf(fp, "'/,d\n", atoi(buf));

printf("Enter the Capacity of the destination place ==> ");

gets(buf);

fprintf(fp, "*/,d\n", atoi(buf));

/*
printf("Enter the Threshold Value for Success ==> ");

gets(buf);

fprintf(fp, "*/,f\n", atof(buf));

*/
fclose(fp);

}

4 9 10

2.000000 0.01 2 0 7 2 12

1.000000 0.01 2 13 2 4 5

6.000000 0.01 2 2 4 1 6

1.000000 0.01 2 5 6 3 3 7 8

1 0 0 0 2 0 0 0 5 0

8
0

www.manaraa.com

196

10 15 10

1.0

o

o
 3 0 1 2 1 10

1.0 0.0 3 2 3 4 1 11

1.0 0.0 3 4 5 6 1 12

1.0 0.0 3 6 7 8 1 13

1.0 0.0 3 8 9 0 1 14

1.0 0.0 1 10 3 0 1 2

1.0 0.0 1 11 3 2 3 4

1.0 0.0 1 12 3 4 5 6

1.0 0.0 1 13 3 6 7 8

1.0 0.0 1 14 3 8 9 0

1 1 1 1 1 1 1 1 1 1 0 0 0

14

3

Makefile for the Petri-net Simulator

(MacroSoft C)

CC=cl

OBJS= petri.obj getopt.obj cycle.obj

CFLAGS= -0 -c

/NOE meains NO EXTernal Dictionary

/EX meams pack EXE file

/ST:8000 means stack size 8000 bytes

LINKFLAGS = /NOE /EX #/codeview

Commands and dependencies for individual modules #

default: petri.exe query.exe

default rules

.c.obj:

$(CC) $(CFLAGS) $*.c

petri.obj: petri.c global.h

$(CC) $(CFLAGS) $*.c

www.manaraa.com

197

getopt.obj: getopt.c

$(CC) $(CFLAGS) $*.c

cycle.obj: cycle.c global.h

$(CC) $(CFLAGS) $*.c

query.obj: query.c

$(CC) $(CFLAGS) $*.c

petri.exe: $(OBJS) global.h

link $(LINKFLAGS) (Slinkopt.msc

query.exe: query.obj

cl $*.obj

Makefile for the Petri-net Simulator

(UNIX)

SRCl = mknet.c

SRC2 = petri.c cycle.c getopt.c proto.h global.h

SRC3 = phil.dat test.dat

OBJS = petri.o cycle.o getopt.o

LIBS = -Im

all: petri mknet

mknet: mknet.c

cc -o mknet mknet.c

petri: $(OBJS) proto.h

cc -o petri $(OBJS) $(LIBS)

.c.o :

cc -0 -c $<

petri+cycle+getopt

www.manaraa.com

petri

nul;

www.manaraa.com

199

APPENDIX B: PROGRAMMABLE LOGIC CONTROLLER(PLC)

AND RELAY LADDER LOGIC FOR THE APCS

In this section, a Programmable Logic Controller(PLC) and Relay Ladder Logic

for the APCS, that was examined and developed in Part II, are introduced. The

PLC is generally performs two major roles concerned with programming and on­

line control of the process. In this section, we introduced a PLC that is a Modular

Programmable Controller (MPC), and a subsystem of the APCS as shown in Figure

1. The MPC has a main power switch, a start/stop button, and a count start/stop

button, and a maximum thirty-two input or output points. Up to this time, thirteen

input and twelve output points are used to control the APCS, and these are related

to input signals called by seven sensors and output behaviors by sixteen cylinders as

follows:

• Input Points

^l;start button, ̂ 2:stop button, ̂ 3:sensorl, ^4:sensor4, ^5:sensor5, ̂ 6:sensor6,

^7:sensor7, #8:sensor2, #9:count start button, ^5^10:count stop button, #1 Ixounter

release lanel, ^12:counter release lane2, and ^13:counter release lane3.

• Output points

#17:cylinderl, ̂ 18:cylinder2, #19:cylinder3 and cylinderl3, #20;cylinder4 and

www.manaraa.com

200

cylinderl4, #21:cylinder5 and cylinderl5, #22:cylinder6 and cylinder 16, :j^23:cylinder7,

#24:cylinder8, #25;cylinder9, #26:cylinderl0, #27:cylinderll, and #28:cylinderl2.

1 17

} • BATTBKY II

) • POWER If

Stilt 0 Court 4 • RUN U

Baton suit S • COKTROLL^ 31

Button 6 n
A
OCourt

7 u

Slop Slop
t 23

Button Buflcn
10 26

II 27

12 21

t) 24

t4 MPCI yo
11 XhfTROLLER)>

16)2

I
(^rogtmmer

0 0 0

' 000
0 0 0

000

Figure 1; PLC Control Panel.

www.manaraa.com

201

Also, the MPC has a hand-held programmer which is the communication inter­

face with the APCS. The hand-held programmer is used to create a program (relay

ladder logic) of instructions, change or correct existing programs, read a program

from the MPC user memory or the program storage cartridge, load a program to

the MPC user memory or the program storage cartridge, and monitor and control

running programs.

A general MPC hand-held programmer translates a program written in a high

level language into relay ladder logic that can be executed by the PLC. The hand-held

programmer generates an internal control coil or output, input contact or relay coil, a

function such as a timer, up counter, down counter, pointer register, shift register, or

clear register, and mathematical operations such as addition, subtraction, less than,

equal to, greater than, and not equal to by using several conventions for programming

relay ladder logic.

One difficulty in using a PLC is in its programmable nature. This is an important

technical aspect for the logic design and realization of the APCS. The programming

of the Relay Ladder Logic (RLL) used in a MPC is important for designing and

controlling the APCS. A ladder diagram graphically represents a system of push but­

ton, limit switches, sensors, contractors, solenoids and other electrical elements. The

proper RLL diagrams processed by MPC will be developed based on part separation

area, accumulation area, staging area, and pallet control area of the APCS.

In addition to establishing thirty-seven input and twenty-seven output points

using the conventions provided, twenty-seven wires and eight registers are used to

develop relay ladder logic for the APCS. Several conventions which are introduced,

are helpful in documenting the ladder logic diagram for the APCS. The conventions

www.manaraa.com

202

help in understanding how to convert conventional ladder diagrams into a logical

sequence of parallel input and output connections, and finally, a Petri net controller

of the APCS. From the relay ladder logic diagrams, many derive a PLC programming

language whose principal value is familiarity to the traditional logician who has just

discovered programmable logic controllers. The constituent of the relay ladder logic

diagrams are five in number (normally open/closed relay, opening of the parallel

branch, closure of parallel branch, and assignment of result to an intermediate variable

or to an output). The basic logic functions such as store (loading of an accumulator

with the value of a variable), and , or, not (inverse), out (activation of an output

or assignment to an internal bit) are obtained by a suitable assemblage of these

constituents and corresponds to the notion of instruction.

Based on these explanations, we developed relay ladder logic for the APCS in

following ways:

• Accumulation Area

Figure 2 shows RLL digram for count and Figure 3 shows for release parts in

accumulation area.

www.manaraa.com

203

109 W7 1010

10 SI

W8 CSI

0-

lOII W9 1053

1052

-H-

WIO CS2

o-

1012 WII 1054 WI2 C53

1053

-a

1013 WI3 1052 W14 C5(

-hi 0-

10 S4

Figure 2: RLL diagram for count in accumulation area

www.manaraa.com

204

104 1051

"H 1 1 [R3TMR]-

-{R3<20]-
WI5

C55

-a

•{R3 = 40] [R3 CLR]-

lOSf 1052 1055 C19

•a
1052 1053 1055 C20

W17 •a
1053 1054 1055 C2I

^ 1 ^ •a

Figure 3: RLL diagram for material release parts

www.manaraa.com

205

• Staging Area

Figure 4 shows RLL digram for material release

1016 107 106 105 C75
W SA

Hl-14 II II -a
cn

1016 107 106 105 C56
W21 „ , W22

HI—H—11—11—
1056

106 105 1057 1059
W43

C23

l-^^HSt-TH»<»]-^^

1023

1023

1023

-[RSTMR]-

-[R5 TMR]-

Figure 4: RLL diagram for material release

www.manaraa.com

206

• Pallet Control Area

Figure 5 and 6 shows RLL digram for pallet control and part pick-up and return

1056

-[R6TMR]-

W4S

•{r6 OR}-

C28

-Ch
0S6 C29

W46 r 1 W47
[R7 < 62 J ^ o

K)57

-[R7>7O]-
W26

C58

•a

[R8 > 127]-
1057 1059

Hh-^
1057

W29

CM -a
-[R7 TMR]-

-[R7CLR]-

Figure 5: RLL diagram for pallet control

www.manaraa.com

207

• Part pick-up and Return Area

-[r7 > 20

•{r8>I

-{R7>I

-{R7 > 40

-[R8>23

-[• R8>»4

-[r7 > 10

-[R8>36

1059

1R7<«I

•{R8<42

•{r7 < 12

-[r7 < 52

-[r8 < 35

i R8<96

{R8>38]

-[R7<55

•{R8<97

•{ R8TMR

1R8CLR

W30

W3I

W32

W33

C24

o

C25

-a

•a
C27

o

Figure 6: RLL diagram for count

www.manaraa.com

208

• Part Separation Area

Figure 7 and 8 shows RLL digram for open power and gatel, and gate2 respec­

tively.

10 4 W4 10

10

W20 ^

08 OSl

A

C17 W3

[rkio] 0

10

108 0S2 102

Rl = l

102

>1

102

>1
W4

n

RITMR

017

Nr Ri aR

Figure 7: RLL diagram for open power and gatel

www.manaraa.com

209

103 0S2 W5

1018

H

R2<8

m CIS

-0-

1018 102

H •

f i R2TMR

W40
1018

R2=8

103 0S3

H
R2aR

Figure 8; RLL diagram for open gate2

	1994
	Petri net approaches for modeling, controlling, and validating flexible manufacturing systems
	Bong Wan Choi
	Recommended Citation

	

